bibtype C - Conference Paper (international conference)
ARLID 0522438
utime 20240103223800.6
mtime 20200224235959.9
SCOPUS 85081552252
DOI 10.1007/978-3-030-41299-9_33
title (primary) (eng) 3D Multi-frequency Fully Correlated Causal Random Field Texture Model
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0522437
ISBN 978-3-030-41298-2
ISSN 0302-9743
title Pattern Recognition
page_num 423-434
publisher
place Cham
name Springer International Publishing
year 2020
editor
name1 Palaiahnakote
name2 Shivakumara
editor
name1 Sanniti di Baja
name2 Gabriella
editor
name1 Wang
name2 Liang
editor
name1 Yan
name2 Wei Qi
keyword texture modeling
keyword Markov random field
keyword Bidirectional Texture Function
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101100
name1 Havlíček
name2 Vojtěch
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/RO/haindl-0522438.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) We propose a fast novel multispectral texture model with an analytical solution for both parameter estimation as well as unlimited synthesis. This Gaussian random field type of model combines a principal random field containing measured multispectral pixels with an auxiliary random field resulting from a given function whose argument is the principal field data.\nThe model can serve as a stand-alone texture model or a local model for more complex compound random field or bidirectional texture function models.\nThe model can be beneficial not only for texture synthesis, enlargement, editing, or compression but also for high accuracy texture recognition.
action
ARLID cav_un_auth*0389856
name The 5th Asian Conference on Pattern Recognition (ACPR 2019)
dates 20191126
mrcbC20-s 20191129
place Auckland
country NZ
RIV BD
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2021
num_of_auth 2
mrcbC52 4 A sml 4as 20231122144803.6
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0307296
confidential S
contract
name Consent to Publish
date 20190920
article_num 33
arlyear 2020
mrcbTft \nSoubory v repozitáři: haindl-0522438-Copyright_ID56.pdf
mrcbU14 85081552252 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0522437 Pattern Recognition 978-3-030-41298-2 0302-9743 1611-3349 423 434 Cham Springer International Publishing 2020 Lecture Notes in Computer Science 12047
mrcbU67 340 Palaiahnakote Shivakumara
mrcbU67 340 Sanniti di Baja Gabriella
mrcbU67 340 Wang Liang
mrcbU67 340 Yan Wei Qi