bibtype J - Journal Article
ARLID 0522528
utime 20240103223808.1
mtime 20200226235959.9
WOS 000530845000012
SCOPUS 85079864481
DOI 10.1016/j.patcog.2020.107264
title (primary) (eng) Handling Gaussian Blur without Deconvolution
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0257388
ISSN 0031-3203
title Pattern Recognition
volume_id 103
publisher
name Elsevier
keyword Gaussian blur
keyword Semi-group
keyword Projection operator
keyword Blur invariants
keyword Image moments
keyword Affine transformation
keyword Combined invariants
author (primary)
ARLID cav_un_auth*0336802
full_dept Department of Image Processing
name1 Kostková
name2 Jitka
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
full_dept Department of Image Processing
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0377447
full_dept Department of Image Processing
name1 Lébl
name2 Matěj
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0389933
name1 Pedone
name2 M.
country FI
source
url http://library.utia.cas.cz/separaty/2020/ZOI/kostkova-0522528.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0031320320300698
cas_special
project
ARLID cav_un_auth*0360229
project_id GA18-07247S
agency GA ČR
abstract (eng) The paper presents a new theory of invariants to Gaussian blur. Unlike earlier methods, the blur kernel may be arbitrary oriented, scaled and elongated. Such blurring is a semi-group action in the image space, where the orbits are classes of blur-equivalent images. We propose a non-linear projection operator which extracts blur-insensitive component of the image. The invariants are then formally defined as moments of this component but can be computed directly from the blurred image without an explicit construction of the projections. Image description by the new invariants does not require any prior knowledge of the blur kernel parameters and does not include any deconvolution. The invariance property could be extended also to linear transformation of the image coordinates and combined affine-blur invariants can be constructed. Experimental comparison to three other blur-invariant methods is given. Potential applications of the new invariants are in blur/position invariant image recognition and in robust template matching.
reportyear 2021
RIV JD
FORD0 10000
FORD1 10200
FORD2 10201
num_of_auth 4
mrcbC52 4 A sml 4as 20231122144807.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0307360
mrcbC61 1
confidential S
contract
name Assignment of Copyright
date 20200215
article_num 107264
mrcbC86 2 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-i 6.85393
mrcbT16-j 1.761
mrcbT16-s 1.492
mrcbT16-B 89.179
mrcbT16-D Q1*
mrcbT16-E Q1
arlyear 2020
mrcbTft \nSoubory v repozitáři: flusser-0522528-copyright.docx
mrcbU14 85079864481 SCOPUS
mrcbU24 PUBMED
mrcbU34 000530845000012 WOS
mrcbU63 cav_un_epca*0257388 Pattern Recognition 0031-3203 1873-5142 Roč. 103 č. 1 2020 Elsevier