| project |
| ARLID |
cav_un_auth*0376351 |
| project_id |
GA19-07635S |
| agency |
GA ČR |
| country |
CZ |
|
| abstract
(eng) |
This paper presents a computational procedure for the design of an observer of a nonlinear system. Outputs can be delayed, however, this delay must be known and constant. The characteristic feature of the design procedure is computation of a solution of a partial differential equation. This equation is solved using the finite element method. Conditions under which existence of a solution is guaranteed are derived. These are formulated by means of theory of partial differential equations in L2-space. Three examples demonstrate viability of thispolynomials. |
| result_subspec |
WOS |
| RIV |
BC |
| FORD0 |
20000 |
| FORD1 |
20200 |
| FORD2 |
20204 |
| reportyear |
2020 |
| num_of_auth |
1 |
| mrcbC52 |
4 A sml 4as 20231122144816.3 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0307186 |
| confidential |
S |
| contract |
| name |
Copyright |
| date |
20200228 |
|
| mrcbC86 |
2 Article|Proceedings Paper Mathematics Applied |
| mrcbC91 |
A |
| mrcbT16-e |
COMPUTERSCIENCE.CYBERNETICS |
| mrcbT16-f |
0.608 |
| mrcbT16-g |
0.12 |
| mrcbT16-h |
12.3 |
| mrcbT16-i |
0.00084 |
| mrcbT16-j |
0.215 |
| mrcbT16-k |
778 |
| mrcbT16-q |
43 |
| mrcbT16-s |
0.241 |
| mrcbT16-y |
27.97 |
| mrcbT16-x |
0.81 |
| mrcbT16-3 |
146 |
| mrcbT16-4 |
Q3 |
| mrcbT16-5 |
0.582 |
| mrcbT16-6 |
50 |
| mrcbT16-7 |
Q4 |
| mrcbT16-B |
15.751 |
| mrcbT16-C |
6.8 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q4 |
| mrcbT16-M |
0.16 |
| mrcbT16-N |
Q4 |
| mrcbT16-P |
6.818 |
| arlyear |
2019 |
| mrcbTft |
\nSoubory v repozitáři: rehak-0522737-Copyright.pdf |
| mrcbU14 |
SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000519191700009 WOS |
| mrcbU56 |
pdf 1,18 MB |
| mrcbU63 |
cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 55 č. 6 2019 1050 1069 Ústav teorie informace a automatizace AV ČR, v. v. i. |