| bibtype |
J -
Journal Article
|
| ARLID |
0522753 |
| utime |
20210803143804.4 |
| mtime |
20200305235959.9 |
| SCOPUS |
85078839303 |
| WOS |
000528187600017 |
| DOI |
10.1016/j.nonrwa.2020.103108 |
| title
(primary) (eng) |
Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model |
| specification |
| page_count |
19 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0258211 |
| ISSN |
1468-1218 |
| title
|
Nonlinear Analysis: Real World Applications |
| volume_id |
54 |
| publisher |
|
|
| keyword |
Neumann problem |
| keyword |
Indefinite weight |
| keyword |
Coincidence degree |
| keyword |
Multiplicity of clines |
| keyword |
Population genetics models |
| keyword |
Multilocus models |
| author
(primary) |
| ARLID |
cav_un_auth*0390578 |
| name1 |
Feltrin |
| name2 |
G. |
| country |
IT |
| garant |
K |
|
| author
|
| ARLID |
cav_un_auth*0390416 |
| name1 |
Gidoni |
| name2 |
Paolo |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| country |
IT |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| abstract
(eng) |
We investigate sufficient conditions for the presence of coexistence states for different genotypes in a diploid diallelic population with dominance distributed on a heterogeneous habitat, considering also the interaction between genes at multiple loci. In mathematical terms, this corresponds to the study of the Neumann boundary value problem. |
| result_subspec |
SCOPUS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2021 |
| num_of_auth |
2 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0307294 |
| mrcbC61 |
1 |
| confidential |
S |
| article_num |
103108 |
| mrcbC86 |
2 Article Mathematics Applied |
| mrcbC91 |
C |
| mrcbT16-e |
MATHEMATICS.APPLIED |
| mrcbT16-f |
2.719 |
| mrcbT16-g |
1.014 |
| mrcbT16-h |
8.2 |
| mrcbT16-i |
0.00803 |
| mrcbT16-j |
1.05 |
| mrcbT16-k |
5697 |
| mrcbT16-q |
106 |
| mrcbT16-s |
1.505 |
| mrcbT16-y |
32.91 |
| mrcbT16-x |
2.63 |
| mrcbT16-3 |
1265 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.633 |
| mrcbT16-6 |
140 |
| mrcbT16-7 |
Q1 |
| mrcbT16-B |
79.825 |
| mrcbT16-C |
87.4 |
| mrcbT16-D |
Q1 |
| mrcbT16-E |
Q1 |
| mrcbT16-M |
1.54 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
87.358 |
| arlyear |
2020 |
| mrcbU14 |
85078839303 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000528187600017 WOS |
| mrcbU63 |
cav_un_epca*0258211 Nonlinear Analysis: Real World Applications 1468-1218 1878-5719 Roč. 54 č. 1 2020 Elsevier |
|