bibtype C - Conference Paper (international conference)
ARLID 0523836
utime 20250123091747.2
mtime 20200420235959.9
SCOPUS 85089232378
WOS 000615970404033
DOI 10.1109/ICASSP40776.2020.9054312
title (primary) (eng) Weighted Krylov-Levenberg-Marquardt method for canonical polyadic tensor decomposition
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0523835
ISBN 978-1-5090-6631-5
title 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2020
page_num 3917-3921
publisher
place Piscataway
name IEEE
year 2020
keyword Tensor decomposition
keyword tensor completion
keyword PARAFAC
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
share 70
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0382249
name1 Phan
name2 A. H.
country RU
author
ARLID cav_un_auth*0382250
name1 Cichocki
name2 A.
country RU
source
url http://library.utia.cas.cz/separaty/2020/SI/tichavsky-0523836.pdf
source_size 330kB
cas_special
project
project_id GA17-00902S
agency GA ČR
ARLID cav_un_auth*0345929
abstract (eng) Weighted canonical polyadic (CP) tensor decomposition appears in a wide range of applications. A typical situation where the weighted decomposition is needed is when some tensor elements are unknown, and the task is to fill in the missing elements under the assumption that the tensor admits a low-rank model. The traditional methods for large-scale decomposition tasks are based on alternating least-squares methods or gradient methods. Second-order methods might have significantly better convergence, but so far they were used only on small tensors. The proposed Krylov-Levenberg-Marquardt method enables to do second-order-based iterations even in large-scale decomposition problems, with or without weights. We show in simulations that the proposed technique can outperform existing state-of-the-art algorithms in some scenarios.
action
ARLID cav_un_auth*0391329
name 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2020
dates 20200504
mrcbC20-s 20200508
place Barcelona
country ES
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2021
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0308330
confidential S
arlyear 2020
mrcbU14 85089232378 SCOPUS
mrcbU24 PUBMED
mrcbU34 000615970404033 WOS
mrcbU56 330kB
mrcbU63 cav_un_epca*0523835 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2020 IEEE 2020 Piscataway 3917 3921 978-1-5090-6631-5