bibtype J - Journal Article
ARLID 0523947
utime 20240103224006.2
mtime 20200424235959.9
WOS 000497900500001
SCOPUS 85075433795
DOI 10.1080/03081079.2019.1692006
title (primary) (eng) A Note on Approximation of Shenoy's Expectation Operator Using Probabilistic Transforms
specification
page_count 16 s.
serial
ARLID cav_un_epca*0256794
ISSN 0308-1079
title International Journal of General Systems
volume_id 49
volume 1 (2020)
page_num 48-63
publisher
name Taylor & Francis
keyword Expectation
keyword belief function
keyword probabilistic transform
keyword commonality function
keyword utility
keyword ambiguity
keyword Choquet integral
author (primary)
ARLID cav_un_auth*0101118
full_dept Department of Decision Making Theory
share 34
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
full_dept Department of Decision Making Theory
share 33
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274184
share 33
name1 Rauh
name2 J.
country DE
source
url http://library.utia.cas.cz/separaty/2020/MTR/jirousek-0523947.pdf
source
url https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692006
cas_special
project
ARLID cav_un_auth*0379647
project_id GA19-06569S
agency GA ČR
country CZ
abstract (eng) Recently, a new way of computing an expected value in the Dempster-Shafer theory of evidence was introduced by Prakash P. Shenoy. Up to now, when they needed\nthe expected value of a utility function in D-S theory, the authors usually did it indirectly: first, they found a probability measure corresponding to the considered belief function, and then computed the classical probabilistic expectation using this probability measure. To the best of our knowledge, Shenoy's operator of expectation is the first approach that takes into account all the information included in the respective belief function. Its only drawback is its exponential computational complexity. This is why, in this paper, we compare five different approaches defining probabilistic representatives of belief function from the point of view, which of them yields the best approximations of Shenoy's expected values of utility functions.
result_subspec WOS
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2021
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0308327
confidential S
mrcbC91 C
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS
mrcbT16-i 0.20849
mrcbT16-j 0.43
mrcbT16-s 0.482
mrcbT16-B 44.296
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2020
mrcbU14 85075433795 SCOPUS
mrcbU24 PUBMED
mrcbU34 000497900500001 WOS
mrcbU63 cav_un_epca*0256794 International Journal of General Systems 0308-1079 1563-5104 Roč. 49 č. 1 2020 48 63 Taylor & Francis