bibtype C - Conference Paper (international conference)
ARLID 0524580
utime 20240103224108.1
mtime 20200528235959.9
SCOPUS 85083664054
DOI 10.1109/ICCAIRO47923.2019.00023
title (primary) (eng) Dynamic Mixture Ratio Model
part_num 92-99
publisher
name The Institute of Electrical and Electronics Engineers, Inc.
pub_time 2020
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0524582
ISBN 978-1-7281-3573-1
title Proceedings of the 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)
page_num 92-99
publisher
place Piscataway
name IEEE
year 2020
keyword dynamic systems
keyword mixture models
keyword Bayesian learning
keyword mixture ratio
author (primary)
ARLID cav_un_auth*0333672
name1 Ruman
name2 Marko
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
country SK
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/AS/karny-0524580.pdf
cas_special
project
project_id LTC18075
agency GA MŠk
country CZ
ARLID cav_un_auth*0372050
project
project_id CA16228
agency The European Cooperation in Science and Technology (COST)
country XE
ARLID cav_un_auth*0372051
abstract (eng) Finite mixtures of probability densities with components from exponential family serve as flexible parametric models of high-dimensional systems. However, with a few specialized exceptions, these dynamic models assume data-independent weights of mixture components. Their use is illogical and restricts the modeling applicability. The requirement for closeness with respect to conditioning, the basic learning operation, leads to a novel class of models: the mixture ratios. The paper justified them and shows their ability to model truly dynamic systems.
action
ARLID cav_un_auth*0392578
name International Conference on Control, Artificial Intelligence, Robotics & Optimization ICCAIRO 2019
dates 20191208
mrcbC20-s 20191210
place Athens
country GR
RIV BD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2021
num_of_auth 2
mrcbC52 4 A sml 4as 20231122144930.9
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0308930
confidential S
contract
name Copyright
date 20200130
article_num 19510399
arlyear 2020
mrcbTft \nSoubory v repozitáři: karny-0524580-CopyrightReceipt.pdf
mrcbU02 C
mrcbU10 2020
mrcbU10 The Institute of Electrical and Electronics Engineers, Inc.
mrcbU14 85083664054 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0524582 Proceedings of the 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO) 978-1-7281-3573-1 92 99 Piscataway IEEE 2020