bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0524975 |
utime |
20240111141038.4 |
mtime |
20200615235959.9 |
SCOPUS |
85087422156 |
WOS |
000610510000012 |
DOI |
10.1109/SACI49304.2020.9118836 |
title
(primary) (eng) |
Modeling of mixed data for Poisson prediction |
specification |
page_count |
6 s. |
media_type |
E |
|
serial |
ARLID |
cav_un_epca*0525235 |
ISBN |
978-1-7281-7378-8 |
title
|
Applied Computational Intelligence and Informatics (SACI) : 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI) |
page_num |
77-82 |
publisher |
place |
Piscataway |
name |
IEEE |
year |
2020 |
|
|
keyword |
mixed data |
keyword |
Poisson distribution |
keyword |
mixture based clustering |
keyword |
passenger demand |
author
(primary) |
ARLID |
cav_un_auth*0349960 |
name1 |
Petrouš |
name2 |
Matej |
institution |
UTIA-B |
full_dept (cz) |
Zpracování signálů |
full_dept (eng) |
Department of Signal Processing |
department (cz) |
ZS |
department (eng) |
ZS |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0383037 |
name1 |
Uglickich |
name2 |
Evženie |
institution |
UTIA-B |
full_dept (cz) |
Zpracování signálů |
full_dept |
Department of Signal Processing |
department (cz) |
ZS |
department |
ZS |
full_dept |
Department of Signal Processing |
country |
RU |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
8A17006 |
agency |
GA MŠk |
country |
CZ |
ARLID |
cav_un_auth*0351997 |
|
abstract
(eng) |
The paper deals with the task of modeling mixed continuous Gaussian and discrete Poisson data observed on a multimodal system. The proposed solution is based on recursive algorithms of Bayesian mixture estimation. The main contributions of the approach are: (i) the use of the discretized information of normal variables in the form of their clusters in order to keep the one-pass recursive estimation methodology and (ii) the prediction of the multimodal Poisson variable. Experiments with simulated and real data are presented. |
action |
ARLID |
cav_un_auth*0393003 |
name |
IEEE 14th International Symposium on Applied Computational Intelligence and Informatics SACI 2020 |
dates |
20200521 |
mrcbC20-s |
20200523 |
place |
Timisoara |
country |
RO |
|
RIV |
BB |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2021 |
num_of_auth |
2 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0309417 |
confidential |
S |
mrcbC86 |
n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Information Systems|Computer Science Theory Methods |
arlyear |
2020 |
mrcbU14 |
85087422156 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000610510000012 WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0525235 Applied Computational Intelligence and Informatics (SACI) : 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI) 978-1-7281-7378-8 77 82 Piscataway IEEE 2020 |
|