bibtype C - Conference Paper (international conference)
ARLID 0524975
utime 20240111141038.4
mtime 20200615235959.9
SCOPUS 85087422156
WOS 000610510000012
DOI 10.1109/SACI49304.2020.9118836
title (primary) (eng) Modeling of mixed data for Poisson prediction
specification
page_count 6 s.
media_type E
serial
ARLID cav_un_epca*0525235
ISBN 978-1-7281-7378-8
title Applied Computational Intelligence and Informatics (SACI) : 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI)
page_num 77-82
publisher
place Piscataway
name IEEE
year 2020
keyword mixed data
keyword Poisson distribution
keyword mixture based clustering
keyword passenger demand
author (primary)
ARLID cav_un_auth*0349960
name1 Petrouš
name2 Matej
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2020/AS/uglickich-0524975.pdf
cas_special
project
project_id 8A17006
agency GA MŠk
country CZ
ARLID cav_un_auth*0351997
abstract (eng) The paper deals with the task of modeling mixed continuous Gaussian and discrete Poisson data observed on a multimodal system. The proposed solution is based on recursive algorithms of Bayesian mixture estimation. The main contributions of the approach are: (i) the use of the discretized information of normal variables in the form of their clusters in order to keep the one-pass recursive estimation methodology and (ii) the prediction of the multimodal Poisson variable. Experiments with simulated and real data are presented.
action
ARLID cav_un_auth*0393003
name IEEE 14th International Symposium on Applied Computational Intelligence and Informatics SACI 2020
dates 20200521
mrcbC20-s 20200523
place Timisoara
country RO
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2021
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0309417
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Information Systems|Computer Science Theory Methods
arlyear 2020
mrcbU14 85087422156 SCOPUS
mrcbU24 PUBMED
mrcbU34 000610510000012 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0525235 Applied Computational Intelligence and Informatics (SACI) : 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI) 978-1-7281-7378-8 77 82 Piscataway IEEE 2020