bibtype C - Conference Paper (international conference)
ARLID 0525022
utime 20240103224144.0
mtime 20200616235959.9
DOI 10.2352/ISSN.2470-1173.2020.6.IRIACV-052
title (primary) (eng) Perceptual License Plate Super-Resolution with CTC Loss
specification
page_count 5 s.
media_type E
serial
ARLID cav_un_epca*0525236
ISSN 2470-1173
title Electronic Imaging, Intelligent Robotics and Industrial Applications using Computer Vision 2020
publisher
place Springfield
name Society for Imaging Science and Technology
year 2020
keyword super resolution
keyword generative adversial networks
keyword optical character recognition
author (primary)
ARLID cav_un_auth*0332672
name1 Bílková
name2 Zuzana
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0322281
name1 Hradiš
name2 M.
country CZ
source
url http://library.utia.cas.cz/separaty/2020/ZOI/bilkova-0525022.pdf
cas_special
project
project_id SVV-2017-260452
agency GA MŠk
country CZ
ARLID cav_un_auth*0393278
project
project_id 1583117
agency GA UK
country CZ
ARLID cav_un_auth*0393033
project
project_id AP1701
agency AV ČR
country CZ
ARLID cav_un_auth*0349658
abstract (eng) We present a novel method for super-resolution (SR) of license plate images based on an end-to-end convolutional neural networks (CNN) combining generative adversial networks\n(GANs) and optical character recognition (OCR). License plate SR systems play an important role in number of security applications such as improvement of road safety, traffic monitoring or surveillance. The specific task requires not only realistic-looking reconstructed images but it also needs to preserve the text information. Standard CNN SR and GANs fail to accomplish this requirment. The incorporation of the OCR pipeline into the method also allows training of the network without the need of ground truth high resolution data which enables easy training on real data with all the real image degradations including compression.
action
ARLID cav_un_auth*0392692
name IS&T International Symposium on Electronic Imaging 2020
dates 20200126
mrcbC20-s 20200130
place Burlingame, California
country US
RIV JC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2021
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0309418
mrcbC61 1
cooperation
ARLID cav_un_auth*0300003
name Vysoké učení technické v Brně, Fakulta informačních technologií
institution VUT FIT
confidential S
article_num 052
arlyear 2020
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0525236 Electronic Imaging, Intelligent Robotics and Industrial Applications using Computer Vision 2020 2470-1173 Springfield Society for Imaging Science and Technology 2020