bibtype J - Journal Article
ARLID 0525315
utime 20240903170548.9
mtime 20200629235959.9
SCOPUS 85091158154
WOS 000544170100008
DOI 10.1214/19-AIHP1017
title (primary) (eng) On temporal regularity of stochastic convolutions in 2-smooth Banach spaces
specification
page_count 17 s.
media_type P
serial
ARLID cav_un_epca*0250789
ISSN 0246-0203
title Annales de L Institut Henri Poincare-Probabilites Et Statistiques
volume_id 56
volume 3 (2020)
page_num 1792-1808
publisher
name Institute of Mathematical Statistics
keyword temporal regularity
keyword stochastic convolution
keyword 2-smooth Banach space
keyword Besov-Orlicz space
author (primary)
ARLID cav_un_auth*0260292
name1 Ondreját
name2 Martin
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
country CZ
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0291737
name1 Veraar
name2 M.
country NL
source
url http://library.utia.cas.cz/separaty/2020/SI/ondrejat-0525315.pdf
source
url https://projecteuclid.org/journals/annales-de-linstitut-henri-poincare-probabilites-et-statistiques/volume-56/issue-3/On-temporal-regularity-of-stochastic-convolutions-in-2-smooth-Banach/10.1214/19-AIHP1017.short
cas_special
project
project_id GA19-07140S
agency GA ČR
country CZ
ARLID cav_un_auth*0385132
abstract (eng) We show that paths of solutions to parabolic stochastic differential equations have the same regularity in time as the Wiener process (as of the current state of art).
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2021
num_of_auth 2
mrcbC52 4 A sml 4as 20231122145005.5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0309773
confidential S
contract
name Copyright transfer agreement
date 20190926
mrcbC86 2 Article Statistics Probability
mrcbC91 A
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-i 1.45873
mrcbT16-j 1.738
mrcbT16-s 2.121
mrcbT16-B 76.575
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2020
mrcbTft \nSoubory v repozitáři: ondrejat-0525315-copyright CTA_AIHP_1017.pdf
mrcbU14 85091158154 SCOPUS
mrcbU24 PUBMED
mrcbU34 000544170100008 WOS
mrcbU63 cav_un_epca*0250789 Annales de L Institut Henri Poincare-Probabilites Et Statistiques 0246-0203 Roč. 56 č. 3 2020 1792 1808 Institute of Mathematical Statistics