bibtype |
J -
Journal Article
|
ARLID |
0525315 |
utime |
20240903170548.9 |
mtime |
20200629235959.9 |
SCOPUS |
85091158154 |
WOS |
000544170100008 |
DOI |
10.1214/19-AIHP1017 |
title
(primary) (eng) |
On temporal regularity of stochastic convolutions in 2-smooth Banach spaces |
specification |
page_count |
17 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0250789 |
ISSN |
0246-0203 |
title
|
Annales de L Institut Henri Poincare-Probabilites Et Statistiques |
volume_id |
56 |
volume |
3 (2020) |
page_num |
1792-1808 |
publisher |
name |
Institute of Mathematical Statistics |
|
|
keyword |
temporal regularity |
keyword |
stochastic convolution |
keyword |
2-smooth Banach space |
keyword |
Besov-Orlicz space |
author
(primary) |
ARLID |
cav_un_auth*0260292 |
name1 |
Ondreját |
name2 |
Martin |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
full_dept |
Department of Stochastic Informatics |
country |
CZ |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0291737 |
name1 |
Veraar |
name2 |
M. |
country |
NL |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA19-07140S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0385132 |
|
abstract
(eng) |
We show that paths of solutions to parabolic stochastic differential equations have the same regularity in time as the Wiener process (as of the current state of art). |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2021 |
num_of_auth |
2 |
mrcbC52 |
4 A sml 4as 20231122145005.5 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0309773 |
confidential |
S |
contract |
name |
Copyright transfer agreement |
date |
20190926 |
|
mrcbC86 |
2 Article Statistics Probability |
mrcbC91 |
A |
mrcbT16-e |
STATISTICSPROBABILITY |
mrcbT16-i |
1.45873 |
mrcbT16-j |
1.738 |
mrcbT16-s |
2.121 |
mrcbT16-B |
76.575 |
mrcbT16-D |
Q1 |
mrcbT16-E |
Q1 |
arlyear |
2020 |
mrcbTft |
\nSoubory v repozitáři: ondrejat-0525315-copyright CTA_AIHP_1017.pdf |
mrcbU14 |
85091158154 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000544170100008 WOS |
mrcbU63 |
cav_un_epca*0250789 Annales de L Institut Henri Poincare-Probabilites Et Statistiques 0246-0203 Roč. 56 č. 3 2020 1792 1808 Institute of Mathematical Statistics |
|