bibtype C - Conference Paper (international conference)
ARLID 0531044
utime 20240103224239.4
mtime 20200720235959.9
SCOPUS 85089232840
DOI 10.1007/978-981-15-4917-5_28
title (primary) (eng) Compositional Models: Iterative Structure Learning from Data
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0531043
ISBN 978-981-15-4916-8
title Sensor Networks and Signal Processing
part_num vol. 176
part_title Smart Innovation, Systems and Technologies
page_num 379-395
publisher
place Singapore
name Springer
year 2021
editor
name1 Peng
name2 Sheng-Lung
editor
name1 Favorskaya
name2 Margarita N.
editor
name1 Chao
name2 Han-Chieh
keyword Compositional models
keyword Structure learning
keyword Decomposability
keyword Likelihood-ratio
keyword Test statistics
author (primary)
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
country CZ
share 25
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0393863
name1 Bína
name2 Vladislav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0368377
name1 Lee
name2 T. R.
country TW
source
url http://library.utia.cas.cz/separaty/2020/MTR/kratochvil-0531044.pdf
cas_special
project
project_id GA19-06569S
agency GA ČR
country CZ
ARLID cav_un_auth*0380559
project
project_id MOST-04-18
agency Akademie věd - GA AV ČR
country CZ
ARLID cav_un_auth*0393867
abstract (eng) Multidimensional probability distributions that are too large to be stored in computer memory can be represented by a compositional model - a sequence of low-dimensional probability distributions that when composed together try to faithfully estimate the original multidimensional distribution. The decomposition to the compositional model is not satisfactorily resolved. We offer an approach based on search traversal through the decomposable model class using likelihood-test statistics. The paper is a work sketch of the current research.
action
ARLID cav_un_auth*0393865
name Sensor Networks and Signal Processing (SNSP 2019) /2./
dates 20191119
place Hualien
country TW
mrcbC20-s 20191122
reportyear 2022
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310094
confidential S
arlyear 2021
mrcbU14 85089232840 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0531043 Sensor Networks and Signal Processing Smart Innovation, Systems and Technologies vol. 176 Springer 2021 Singapore 379 395 978-981-15-4916-8 2190-3018
mrcbU67 Peng Sheng-Lung 340
mrcbU67 Favorskaya Margarita N. 340
mrcbU67 Chao Han-Chieh 340