bibtype C - Conference Paper (international conference)
ARLID 0531046
utime 20240103224239.5
mtime 20200720235959.9
SCOPUS 85089213321
DOI 10.1007/978-981-15-4917-5_22
title (primary) (eng) Performance of Probabilistic Approach and Artificial Neural Network on Questionnaire Data Concerning Taiwanese Ecotourism
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0531043
ISBN 978-981-15-4916-8
title Sensor Networks and Signal Processing
part_num vol. 176
part_title Smart Innovation, Systems and Technologies
page_num 283-295
publisher
place Singapore
name Springer
year 2021
editor
name1 Peng
name2 Sheng-Lung
editor
name1 Favorskaya
name2 Margarita N.
editor
name1 Chao
name2 Han-Chieh
keyword Compositional models
keyword Artificial neural network
keyword Model comparison
keyword Taiwanese ecotourism data set
author (primary)
ARLID cav_un_auth*0393863
name1 Bína
name2 Vladislav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0261750
name1 Váchová
name2 L.
country CZ
author
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0368377
name1 Lee
name2 T. R.
country TW
source
url http://library.utia.cas.cz/separaty/2020/MTR/kratochvil-0531046.pdf
cas_special
project
project_id GA19-06569S
agency GA ČR
country CZ
ARLID cav_un_auth*0379647
project
project_id MOST-04-18
agency Akademie věd - GA AV ČR
country CZ
ARLID cav_un_auth*0393867
abstract (eng) This paper aims to perform modeling of Taiwanese farm and ecotourism data using compositional models as a probabilistic approach and to compare its results with the performance of an artificial neural network approach. Authors use probabilistic compositional models together with the artificial neural network as a classifier and compare the accuracy of both approaches. The probabilistic model structure is learned using hill climbing algorithm, and the weights of multilayer feedforward artificial neural network are learned using an R implementation of H2O library for deep learning. In case of both approaches, we employ a non-exhaustive cross-validation method and compare the models. The comparison is augmented by the structure of the compositional model and basic characterization of artificial neural network. As expected, the compositional models show significant advantages in interpretability of results and (probabilistic) relations between variables, whereas the artificial neural network provides more accurate yet “black-box” model.
action
ARLID cav_un_auth*0393865
name Sensor Networks and Signal Processing (SNSP 2019) /2./
dates 20191119
mrcbC20-s 20191122
place Hualien
country TW
RIV IN
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2021
num_of_auth 5
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310092
confidential S
arlyear 2021
mrcbU14 85089213321 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0531043 Sensor Networks and Signal Processing Smart Innovation, Systems and Technologies vol. 176 978-981-15-4916-8 283 295 Singapore Springer 2021 2190-3018
mrcbU67 Peng Sheng-Lung 340
mrcbU67 Favorskaya Margarita N. 340
mrcbU67 Chao Han-Chieh 340