bibtype C - Conference Paper (international conference)
ARLID 0531047
utime 20240103224239.6
mtime 20200720235959.9
SCOPUS 85089240614
DOI 10.1007/978-981-15-4917-5_25
title (primary) (eng) A General Approach to Probabilistic Data Mining
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0531043
ISBN 978-981-15-4916-8
title Sensor Networks and Signal Processing
part_num vol. 176
part_title Smart Innovation, Systems and Technologies
page_num 325-340
publisher
place Singapore
name Springer
year 2021
editor
name1 Peng
name2 Sheng-Lung
editor
name1 Favorskaya
name2 Margarita N.
editor
name1 Chao
name2 Han-Chieh
keyword approximation
keyword probability models
keyword conditional independence
keyword decomposition
keyword information content
keyword ambiguity
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/MTR/kratochvil-0531047.pdf
cas_special
project
project_id GA19-06569S
agency GA ČR
country CZ
ARLID cav_un_auth*0380559
project
project_id MOST-04-18
agency Akademie věd - GA AV ČR
country CZ
ARLID cav_un_auth*0393867
abstract (eng) The paper describes principles enabling us to express the knowledge hidden in a multidimensional probability distribution - a distribution that is assumed to have generated the input data - into the form legible by humans, into the form expressible in a plain language. The generality of this approach arises from the fact that we do not assume any type of probability distribution. The basic idea is that the analysis of such a multidimensional distribution is, because of its computational complexity, intractable, and therefore we construct its approximation in a form of a decomposable model, which provides an easy interpretation. The process should be controlled by an expert in the field of application, and the presented principles give him instruction, how, using the tools from probability and information theories, to get satisfactory results.
action
ARLID cav_un_auth*0393865
name Sensor Networks and Signal Processing (SNSP 2019) /2./
dates 20191119
place Hualien
country TW
mrcbC20-s 20191122
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2022
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310093
confidential S
arlyear 2021
mrcbU14 85089240614 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0531043 Sensor Networks and Signal Processing Smart Innovation, Systems and Technologies vol. 176 Springer 2021 Singapore 325 340 978-981-15-4916-8 2190-3018
mrcbU67 Peng Sheng-Lung 340
mrcbU67 Favorskaya Margarita N. 340
mrcbU67 Chao Han-Chieh 340