bibtype C - Conference Paper (international conference)
ARLID 0531345
utime 20240111141039.6
mtime 20200803235959.9
SCOPUS 85092640395
DOI 10.1109/INES49302.2020.9147173
title (primary) (eng) Rayleigh model fitting to nonnegative discrete data
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0531344
ISBN 978-1-7281-1059-2
ISSN 1543-9259
title Proceedings of 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES)
page_num 67-72
publisher
place Piscataway
name IEEE
year 2020
keyword Poisson distribution
keyword multimodal data
keyword Rayleigh distribution
keyword recursive estimation
keyword passenger demand
author (primary)
ARLID cav_un_auth*0349960
name1 Petrouš
name2 Matej
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2020/ZS/uglickich-0531345.pdf
cas_special
project
project_id 8A17006
agency GA MŠk
country CZ
ARLID cav_un_auth*0351997
abstract (eng) The paper deals with modeling ordinal discrete random variables with a high number of nonnegative realizations. The prediction of the Rayleigh distribution learned on clusters of the explanatory variables is proposed. The proposed solution consists of the clustering and estimation phases based on the knowledge both of the target and explanatory variables, and the prediction phase using only the information from the explanatory variables. The main contributions of the approach are: (i) using the discretized knowledge of clusters of the explanatory variables and (ii) describing nonnegative discrete data by the multimodal Rayleigh distribution. Experiments with a data set from a tram network are provided.
action
ARLID cav_un_auth*0394315
name IEEE International Conference on Intelligent Engineering Systems 2020 (INES 2020) /24./
dates 20200708
mrcbC20-s 20200710
place Reykjavík
country IS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2021
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310088
confidential S
arlyear 2020
mrcbU14 85092640395 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0531344 Proceedings of 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES) 978-1-7281-1059-2 1543-9259 67 72 Piscataway IEEE 2020