bibtype J - Journal Article
ARLID 0531483
utime 20240103224313.6
mtime 20200810235959.9
SCOPUS 85089296542
WOS 000556759700004
DOI 10.1109/TSP.2020.3009507
title (primary) (eng) Performance Bounds for Complex-Valued Independent Vector Analysis
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 68
volume 1 (2020)
page_num 4258-4267
keyword Blind source separation
keyword independent component/vector analysis
keyword Cramér-Rao lower bound,
author (primary)
ARLID cav_un_auth*0350114
name1 Kautský
name2 V.
country CZ
share 60
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
share 15
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230113
name1 Koldovský
name2 Z.
country CZ
share 15
author
ARLID cav_un_auth*0394533
name1 Adali
name2 T.
country US
share 10
source
url http://library.utia.cas.cz/separaty/2020/SI/tichavsky-0531483.pdf
source
url https://ieeexplore.ieee.org/document/9141450
cas_special
project
project_id GA17-00902S
agency GA ČR
ARLID cav_un_auth*0345929
project
project_id GA20-17720S
agency GA ČR
country CZ
ARLID cav_un_auth*0395418
abstract (eng) Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramér-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets.The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms,especially, in case of highlynon-circular signals. Hence, there is a room for possible improvements.\n
result_subspec WOS
RIV JD
FORD0 20000
FORD1 20200
FORD2 20201
reportyear 2021
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310654
confidential S
mrcbC86 3+4 Article Engineering Electrical Electronic
mrcbC91 C
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-i 8.68988
mrcbT16-j 1.701
mrcbT16-s 1.638
mrcbT16-B 91.464
mrcbT16-D Q1*
mrcbT16-E Q1
arlyear 2020
mrcbU14 85089296542 SCOPUS
mrcbU24 PUBMED
mrcbU34 000556759700004 WOS
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 68 č. 1 2020 4258 4267