| bibtype |
J -
Journal Article
|
| ARLID |
0531495 |
| utime |
20240103224314.9 |
| mtime |
20200810235959.9 |
| SCOPUS |
85086593706 |
| WOS |
000540923400001 |
| DOI |
10.1007/s00205-020-01547-x |
| title
(primary) (eng) |
Derivation of von Kármán Plate Theory in the Framework of Three-Dimensional Viscoelasticity |
| specification |
| page_count |
52 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256187 |
| ISSN |
0003-9527 |
| title
|
Archive for Rational Mechanics and Analysis |
| volume_id |
238 |
| volume |
1 (2020) |
| page_num |
489-540 |
| publisher |
|
|
| keyword |
von karman viscoelastic plates |
| keyword |
gradient flow in metric spaces |
| author
(primary) |
| ARLID |
cav_un_auth*0327068 |
| name1 |
Friedrich |
| name2 |
M. |
| country |
DE |
|
| author
|
| ARLID |
cav_un_auth*0101142 |
| name1 |
Kružík |
| name2 |
Martin |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| project |
| project_id |
GA17-04301S |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0347023 |
|
| project |
| project_id |
GF19-29646L |
| agency |
GA ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0385134 |
|
| abstract
(eng) |
We apply a quasistatic nonlinear model for nonsimple viscoelastic materials at a finite-strain setting in Kelvin’s-Voigt’s rheology to derive a viscoelastic plate model of von Kármán type. We start from time-discrete solutions to a model of three-dimensional viscoelasticity considered in Friedrich and Kružík (SIAM J Math Anal 50:4426–4456, 2018) where the viscosity stress tensor complies with the principle of time-continuous frame-indifference. Combining the derivation of nonlinear plate theory by Friesecke, James and Müller (Commun Pure Appl Math 55:1461–1506, 2002. Arch Ration Mech Anal 180:183–236, 2006), and the abstract theory of gradient flows in metric spaces by Sandier and Serfaty (Commun Pure Appl Math 57:1627–1672, 2004), we perform a dimension-reduction from three dimensions to two dimensions and identify weak solutions of viscoelastic form of von Kármán plates. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2021 |
| num_of_auth |
2 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0310652 |
| confidential |
S |
| mrcbC86 |
3+4 Article Mathematics Applied|Mechanics |
| mrcbC91 |
A |
| mrcbT16-e |
MATHEMATICS.APPLIED|MECHANICS |
| mrcbT16-f |
3.236 |
| mrcbT16-g |
0.81 |
| mrcbT16-h |
20.4 |
| mrcbT16-i |
0.01614 |
| mrcbT16-j |
2.519 |
| mrcbT16-k |
11527 |
| mrcbT16-q |
118 |
| mrcbT16-s |
2.933 |
| mrcbT16-y |
37.61 |
| mrcbT16-x |
2.56 |
| mrcbT16-3 |
1026 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.558 |
| mrcbT16-6 |
168 |
| mrcbT16-7 |
Q1 |
| mrcbT16-B |
98.241 |
| mrcbT16-C |
73.3 |
| mrcbT16-D |
Q1* |
| mrcbT16-E |
Q1* |
| mrcbT16-M |
1.18 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
87.736 |
| arlyear |
2020 |
| mrcbU14 |
85086593706 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000540923400001 WOS |
| mrcbU63 |
cav_un_epca*0256187 Archive for Rational Mechanics and Analysis 0003-9527 1432-0673 Roč. 238 č. 1 2020 489 540 Springer |
|