bibtype |
J -
Journal Article
|
ARLID |
0531615 |
utime |
20250310145831.7 |
mtime |
20200817235959.9 |
SCOPUS |
85089080409 |
WOS |
000556617900001 |
DOI |
10.1007/s00205-020-01559-7 |
title
(primary) (eng) |
Global invertibility for orientation-preserving Sobolev maps via invertibility on or near the boundary |
specification |
page_count |
43 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256187 |
ISSN |
0003-9527 |
title
|
Archive for Rational Mechanics and Analysis |
volume_id |
238 |
volume |
3 (2020) |
page_num |
1113-1155 |
publisher |
|
|
keyword |
topological degree |
keyword |
Nonlinear Elasticity |
keyword |
global invertibility |
keyword |
approximate invertibility on the boundary |
keyword |
orientation-preserving deformations |
author
(primary) |
ARLID |
cav_un_auth*0359168 |
name1 |
Krömer |
name2 |
Stefan |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
full_dept |
Department of Decision Making Theory |
country |
DE |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GF19-29646L |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0385134 |
|
project |
project_id |
8J19AT013 |
agency |
GA MŠk |
country |
CZ |
ARLID |
cav_un_auth*0385123 |
|
abstract
(eng) |
By a result of Ball (Proc R Soc Edinb Sect A Math 88:315–328, 1981. https://doi.org/10.1017/S030821050002014X), a locally orientation preserving Sobolev map is almost everywhere globally invertible whenever its boundary values admit a homeomorphic extension. As shown here for any dimension, the conclusions of Ball’s theorem and related results can be reached while completely avoiding the problem of homeomorphic extension. For suitable domains, it is enough to know that the trace is invertible on the boundary or can be uniformly approximated by such maps. An application in Nonlinear Elasticity is the existence of homeomorphic minimizers with finite distortion whose boundary values are not fixed. As a tool in the proofs, strictly orientation-preserving maps and their global invertibility properties are studied from a purely topological point of view. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10102 |
reportyear |
2021 |
num_of_auth |
1 |
mrcbC52 |
2 R hod 4 4rh 4 20250310144707.6 4 20250310145831.7 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0310649 |
confidential |
S |
mrcbC86 |
1 Article Mathematics Applied|Mechanics |
mrcbC91 |
A |
mrcbT16-e |
MATHEMATICSAPPLIED|MECHANICS |
mrcbT16-i |
3.38305 |
mrcbT16-j |
2.519 |
mrcbT16-s |
2.933 |
mrcbT16-B |
98.241 |
mrcbT16-D |
Q1* |
mrcbT16-E |
Q1* |
arlyear |
2020 |
mrcbTft |
\nSoubory v repozitáři: kromer-531615.pdf |
mrcbU14 |
85089080409 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000556617900001 WOS |
mrcbU63 |
cav_un_epca*0256187 Archive for Rational Mechanics and Analysis 0003-9527 1432-0673 Roč. 238 č. 3 2020 1113 1155 Springer |
|