bibtype J - Journal Article
ARLID 0531646
utime 20240103224328.8
mtime 20200818235959.9
SCOPUS 85061115962
WOS 000495091300003
DOI 10.1016/j.fss.2019.01.009
title (primary) (eng) Generalized CF1F2-integrals: From Choquet-like aggregation to ordered directionally monotone functions
specification
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 378
volume 1 (2020)
page_num 44-67
publisher
name Elsevier
keyword Uninorm
keyword Fuzzy Implication
keyword Distributivity
author (primary)
ARLID cav_un_auth*0330395
name1 Dimuro
name2 G. P.
country BR
share 25
garant K
author
ARLID cav_un_auth*0330393
name1 Lucca
name2 G.
country ES
share 10
author
ARLID cav_un_auth*0298830
name1 Bedregal
name2 B.
country BR
share 10
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 25
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0357025
name1 Sanz
name2 A.
country ES
share 10
author
ARLID cav_un_auth*0394829
name1 Ling
name2 S.-T.
country AU
share 10
author
ARLID cav_un_auth*0271524
name1 Bustince
name2 H.
country ES
share 10
source
url http://library.utia.cas.cz/separaty/2020/E/mesiar-0531646.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0165011418305451
cas_special
abstract (eng) This paper introduces the theoretical framework for a generalization of CF1F2-integrals, a family of Choquet-like integrals used successfully in the aggregation process of the fuzzy reasoning mechanisms of fuzzy rule based classification systems. The proposed generalization, called by gCF1F2-integrals, is based on the so-called pseudo pre-aggregation function pairs (F1,F2), which are pairs of fusion functions satisfying a minimal set of requirements in order to guarantee that the gCF1F2-integrals to be either an aggregation function or just an ordered directionally increasing function satisfying the appropriate boundary conditions. We propose a dimension reduction of the input space, in order to deal with repeated elements in the input, avoiding ambiguities in the definition of gCF1F2-integrals. We study several properties of gCF1F2-integrals, considering different constraints for the functions F1 and F2, and state under which conditions gCF1F2-integrals present or not averaging behaviors. Several examples of gCF1F2-integrals are presented, considering different pseudo pre-aggregation function pairs, defined on, e.g., t-norms, overlap functions, copulas that are neither t-norms nor overlap functions and other functions that are not even pre-aggregation functions.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2021
num_of_auth 7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310640
confidential S
mrcbC86 1* Article Computer Science Theory Methods|Mathematics Applied|Statistics Probability
mrcbC91 C
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-i 1.54465
mrcbT16-j 0.706
mrcbT16-s 0.902
mrcbT16-B 48.968
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2020
mrcbU14 85061115962 SCOPUS
mrcbU24 PUBMED
mrcbU34 000495091300003 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 378 č. 1 2020 44 67 Elsevier