bibtype C - Conference Paper (international conference)
ARLID 0532129
utime 20240103224411.5
mtime 20200914235959.9
title (primary) (eng) Bivariate Geometric Distribution and Competing Risks: Statistical Analysis and Application
specification
page_count 7 s.
media_type E
serial
ARLID cav_un_epca*0532128
ISBN 978-80-7509-734-7
title 38th INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2020) : Conference Proceedings
page_num 636-642
publisher
place Brno
name Mendel University in Brno
year 2020
editor
name1 Kapounek
name2 Svatopluk
editor
name1 Vránová
name2 Hana
keyword bivariate geometric distribution
keyword competing risks
keyword unemployment data
author (primary)
ARLID cav_un_auth*0101227
share 100
name1 Volf
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/SI/volf-0532129.pdf
cas_special
project
ARLID cav_un_auth*0363963
project_id GA18-02739S
agency GA ČR
abstract (eng) The contribution studies the statistical model for discrete time two-variate duration (time-to-event) data. The analysis is complicated by partial data observation caused either by the right-side censoring or by the presence of dependent competing events. The case is modeled and analyzed with the aid of a two-variate geometric distribution. The model identifiability is discussed and it is shown that the model is not identifiable without proper additional assumptions. The method of analysis is illustrated both on artificially generated\nexample and on real unemployment data.
action
ARLID cav_un_auth*0395560
name INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2020) /38./
dates 20200909
mrcbC20-s 20200911
place Brno
country CZ
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2021
num_of_auth 1
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310739
confidential S
arlyear 2020
mrcbU02 C
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0532128 38th INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2020) : Conference Proceedings Mendel University in Brno 2020 Brno 636 642 978-80-7509-734-7
mrcbU67 340 Kapounek Svatopluk
mrcbU67 340 Vránová Hana