bibtype J - Journal Article
ARLID 0532181
utime 20250310141540.7
mtime 20200916235959.9
SCOPUS 85092572093
WOS 000574739900010
DOI 10.1109/TSP.2020.3023823
title (primary) (eng) Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 68
volume 10 (2020)
page_num 5365-5378
keyword Diffusion network
keyword Diffusion strategz
keyword State estimation
author (primary)
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0267768
name1 Tichý
name2 Ondřej
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/AS/dedecius-0532181.pdf
source
url https://ieeexplore.ieee.org/document/9195780
cas_special
project
project_id GA20-27939S
ARLID cav_un_auth*0391986
agency GA ČR
abstract (eng) We study the problem of distributed sequential estimation of common states and measurement noise covariance matrices of hidden Markov models by networks of collaborating nodes. We adopt a realistic assumption that the true covariance matrices are possibly different (heterogeneous) across the network. This setting is frequent in many distributed real-world systems where the sensors (e.g., radars) are deployed in a spatially anisotropic environment, or where the networks may consist of sensors with different measuring principles (e.g., using different wavelengths). Our solution is rooted in the variational Bayesian paradigm. In order to improve the estimation performance, the measurements and the posterior estimates are communicated among adjacent neighbors within one network hop distance using the information diffusion strategy. The resulting adaptive algorithm selects neighbors with compatible information to prevent degradation of estimates.
result_subspec WOS
RIV BB
FORD0 20000
FORD1 20200
FORD2 20202
reportyear 2021
num_of_auth 2
mrcbC52 2 R hod 4 4rh 4 20250310141527.1 4 20250310141540.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0310804
confidential S
mrcbC86 3+4 Article Engineering Electrical Electronic
mrcbC91 C
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-i 8.68988
mrcbT16-j 1.701
mrcbT16-s 1.638
mrcbT16-B 91.464
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2020
mrcbTft \nSoubory v repozitáři: dedecius-532181.pdf
mrcbU14 85092572093 SCOPUS
mrcbU24 PUBMED
mrcbU34 000574739900010 WOS
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 68 č. 10 2020 5365 5378