bibtype J - Journal Article
ARLID 0532968
utime 20240103224520.4
mtime 20201012235959.9
SCOPUS 85076357344
WOS 000502443800001
DOI 10.1080/10556788.2019.1700256
title (primary) (eng) Newton-type multilevel optimization method
specification
page_count 34 s.
media_type P
serial
ARLID cav_un_epca*0254588
ISSN 1055-6788
title Optimization Methods & Software
volume_id 37
volume 1 (2022)
page_num 45-78
publisher
name Taylor & Francis
keyword Newton's method
keyword multilevel algorithms
keyword multigrid methods
keyword unconstrained optimization
author (primary)
ARLID cav_un_auth*0396914
name1 Ho
name2 Ch. P.
country GB
share 33
author
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 34
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0396915
name1 Parpas
name2 P.
country GB
source
url http://library.utia.cas.cz/separaty/2020/MTR/kocvara-0532968.pdf
source
url https://www.tandfonline.com/doi/full/10.1080/10556788.2019.1700256
cas_special
abstract (eng) Inspired by multigrid methods for linear systems of equations, multilevel optimization methods have been proposed to solve structured optimization problems. Multilevel methods make more assumptions regarding the structure of the optimization model, and as a result, they outperform single-level methods, especially for large-scale models. The impressive performance of multilevel optimization methods is an empirical observation, and no theoretical explanation has so far been proposed. In order to address this issue, we study the convergence properties of a multilevel method that is motivated by second-order methods. We take the first step toward establishing how the structure of an optimization problem is related to the convergence rate of multilevel algorithms.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0311787
confidential S
mrcbC91 C
mrcbT16-e COMPUTERSCIENCESOFTWAREENGINEERING|MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 1.039
mrcbT16-s 1.079
mrcbT16-D Q1
mrcbT16-E Q2
arlyear 2022
mrcbU14 85076357344 SCOPUS
mrcbU24 PUBMED
mrcbU34 000502443800001 WOS
mrcbU63 cav_un_epca*0254588 Optimization Methods & Software 1055-6788 1029-4937 Roč. 37 č. 1 2022 45 78 Taylor & Francis