bibtype J - Journal Article
ARLID 0532969
utime 20240103224520.5
mtime 20201012235959.9
SCOPUS 85083763340
WOS 000551241700029
DOI 10.1137/19M1254490
title (primary) (eng) On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization
specification
page_count 26 s.
media_type P
serial
ARLID cav_un_epca*0257600
ISSN 1064-8275
title SIAM Journal on Scientific Computing
volume_id 42
volume 1 (2020)
publisher
name SIAM Society for Industrial and Applied Mathematics
keyword topology optimization
keyword multigrid methods
keyword interior point methods
keyword preconditioners for iterative methods
keyword augmented Lagrangian methods
author (primary)
ARLID cav_un_auth*0396916
share 50
name1 Brune
name2 A.
country GB
author
ARLID cav_un_auth*0101131
share 50
name1 Kočvara
name2 Michal
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/MTR/kocvara-0532969.pdf
source
url https://epubs.siam.org/doi/abs/10.1137/19M1254490
cas_special
abstract (eng) One of the challenges encountered in optimization of mechanical structures, in particular in what is known as topology optimization, is the size of the problems, which can easily involve millions of variables. A basic example is the minimum compliance formulation of the variable thickness sheet (VTS) problem, which is equivalent to a convex problem. We propose to solve the VTS problem by the penalty-barrier multiplier (PBM) method, introduced by R. Polyak and later studied by Ben-Tal and Zibulevsky and others. The most computationally expensive part of the algorithm is the solution of linear systems arising from the Newton method used to minimize a generalized augmented Lagrangian. We use a special structure of the Hessian of this Lagrangian to reduce the size of the linear system and to convert it to a form suitable for a standard multigrid method. This converted system is solved approximately by a multigrid
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2021
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0311788
confidential S
mrcbC86 3+4 Article Mathematics Applied
mrcbC91 C
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-i 4.02375
mrcbT16-j 1.513
mrcbT16-s 1.674
mrcbT16-B 90.85
mrcbT16-D Q1*
mrcbT16-E Q1
arlyear 2020
mrcbU14 85083763340 SCOPUS
mrcbU24 PUBMED
mrcbU34 000551241700029 WOS
mrcbU63 cav_un_epca*0257600 SIAM Journal on Scientific Computing 1064-8275 1095-7197 Roč. 42 č. 1 2020 A28 A53 SIAM Society for Industrial and Applied Mathematics