| bibtype |
J -
Journal Article
|
| ARLID |
0533381 |
| utime |
20240103224558.1 |
| mtime |
20201022235959.9 |
| SCOPUS |
85072219787 |
| WOS |
000558640800001 |
| DOI |
10.1016/j.fss.2019.08.015 |
| title
(primary) (eng) |
Relationship between two types of superdecomposition integrals on finite spaces |
| specification |
| page_count |
16 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256642 |
| ISSN |
0165-0114 |
| title
|
Fuzzy Sets and Systems |
| volume_id |
396 |
| volume |
1 (2020) |
| page_num |
1-16 |
| publisher |
|
|
| keyword |
Sugeno Integral |
| keyword |
Fuzzy Measure |
| keyword |
Aggregation Function |
| author
(primary) |
| ARLID |
cav_un_auth*0258953 |
| name1 |
Ouyang |
| name2 |
Y. |
| country |
CN |
| share |
30 |
|
| author
|
| ARLID |
cav_un_auth*0348640 |
| name1 |
Li |
| name2 |
J. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| share |
30 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| abstract
(eng) |
This paper investigates the relationship between two types of superdecomposition integrals, namely, the convex integral and the pan-integral from above, on finite spaces. To this end, we introduce two new concepts related to monotone measures - superadditivity with respect to singletons and minimal strictly subadditive set - and discuss some of their properties. In the case that the monotone measure μ is superadditive with respect to singletons, we show that these two types of integrals are equivalent. In other cases, by means of the characteristics of minimal strictly subadditive sets we provide a set of necessary and sufficient conditions for which these two types of integrals coincide with each other. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2021 |
| num_of_auth |
3 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0311786 |
| confidential |
S |
| mrcbC86 |
2 Article Computer Science Theory Methods|Mathematics Applied|Statistics Probability |
| mrcbC91 |
C |
| mrcbT16-e |
COMPUTERSCIENCE.THEORY&METHODS|MATHEMATICS.APPLIED|STATISTICS&PROBABILITY |
| mrcbT16-f |
3.213 |
| mrcbT16-g |
1.927 |
| mrcbT16-h |
18.9 |
| mrcbT16-i |
0.00736 |
| mrcbT16-j |
0.706 |
| mrcbT16-k |
17883 |
| mrcbT16-q |
191 |
| mrcbT16-s |
0.902 |
| mrcbT16-y |
34.79 |
| mrcbT16-x |
3.38 |
| mrcbT16-3 |
2053 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.960 |
| mrcbT16-6 |
218 |
| mrcbT16-7 |
Q1 |
| mrcbT16-B |
48.968 |
| mrcbT16-C |
85.8 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q2 |
| mrcbT16-M |
1.86 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
93.396 |
| arlyear |
2020 |
| mrcbU14 |
85072219787 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000558640800001 WOS |
| mrcbU63 |
cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 396 č. 1 2020 1 16 Elsevier |
|