bibtype J - Journal Article
ARLID 0533381
utime 20240103224558.1
mtime 20201022235959.9
SCOPUS 85072219787
WOS 000558640800001
DOI 10.1016/j.fss.2019.08.015
title (primary) (eng) Relationship between two types of superdecomposition integrals on finite spaces
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 396
volume 1 (2020)
page_num 1-16
publisher
name Elsevier
keyword Sugeno Integral
keyword Fuzzy Measure
keyword Aggregation Function
author (primary)
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
share 30
author
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 30
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/E/mesiar-0533381.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0165011419304245
cas_special
abstract (eng) This paper investigates the relationship between two types of superdecomposition integrals, namely, the convex integral and the pan-integral from above, on finite spaces. To this end, we introduce two new concepts related to monotone measures - superadditivity with respect to singletons and minimal strictly subadditive set - and discuss some of their properties. In the case that the monotone measure μ is superadditive with respect to singletons, we show that these two types of integrals are equivalent. In other cases, by means of the characteristics of minimal strictly subadditive sets we provide a set of necessary and sufficient conditions for which these two types of integrals coincide with each other.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2021
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0311786
confidential S
mrcbC86 2 Article Computer Science Theory Methods|Mathematics Applied|Statistics Probability
mrcbC91 C
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-i 1.54465
mrcbT16-j 0.706
mrcbT16-s 0.902
mrcbT16-B 48.968
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2020
mrcbU14 85072219787 SCOPUS
mrcbU24 PUBMED
mrcbU34 000558640800001 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 396 č. 1 2020 1 16 Elsevier