bibtype J - Journal Article
ARLID 0533565
utime 20240103224611.7
mtime 20201026235959.9
SCOPUS 85084595565
WOS 000618640300001
DOI 10.1016/j.finmar.2020.100562
title (primary) (eng) Measurement of common risks in tails: A panel quantile regression model for financial returns
specification
page_count 23 s.
media_type P
serial
ARLID cav_un_epca*0258506
ISSN 1386-4181
title Journal of Financial Markets
volume_id 52
publisher
name Elsevier
keyword Panel quantile regression
keyword Realized measures
keyword Value-at-risk
author (primary)
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0344057
name1 Čech
name2 František
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/E/barunik-0533565.pdf
source
url https://www.sciencedirect.com/science/article/pii/S1386418120300318
cas_special
project
project_id GX19-28231X
agency GA ČR
country CZ
ARLID cav_un_auth*0385135
abstract (eng) We investigate how to measure common risks in the tails of return distributions using the recently proposed panel quantile regression model for financial returns. By exploring how volatility crosses all quantiles of the return distribution and using a fixed effects estimator, we can control for otherwise unobserved heterogeneity among financial assets. Direct benefits are revealed in a portfolio value-at-risk application, where our modeling strategy performs significantly better than several benchmark models. In particular, our results show that the panel quantile regression model for returns consistently outperforms all competitors in the left tail. Sound statistical performance translates directly into economic gains.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2022
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0311940
mrcbC61 1
cooperation
ARLID cav_un_auth*0359004
name IES FSV UK
country CZ
confidential S
article_num 100562
mrcbC86 1 Article Business Finance
mrcbC91 C
mrcbT16-e BUSINESSFINANCE
mrcbT16-j 1.502
mrcbT16-s 1.661
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2021
mrcbU14 85084595565 SCOPUS
mrcbU24 PUBMED
mrcbU34 000618640300001 WOS
mrcbU63 cav_un_epca*0258506 Journal of Financial Markets 1386-4181 1878-576X Roč. 52 č. 1 2021 Elsevier