bibtype J - Journal Article
ARLID 0533567
utime 20250313101721.4
mtime 20201026235959.9
SCOPUS 85089487417
WOS 000808118800002
DOI 10.1016/j.finmar.2020.100588
title (primary) (eng) Does it pay to follow anomalies research? Machine learning approach with international evidence
specification
page_count 73 s.
media_type P
serial
ARLID cav_un_epca*0258506
ISSN 1386-4181
title Journal of Financial Markets
volume_id 56
publisher
name Elsevier
keyword Anomalies
keyword Machine Learning
keyword International Finance
author (primary)
ARLID cav_un_auth*0398132
name1 Hronec
name2 Martin
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
country SK
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0398133
name1 Tobek
name2 O.
country GB
source
url http://library.utia.cas.cz/separaty/2020/E/hronec-0533567.pdf
source
url https://www.sciencedirect.com/science/article/pii/S1386418120300574
cas_special
project
project_id GX19-28231X
agency GA ČR
country CZ
ARLID cav_un_auth*0385135
abstract (eng) We study out-of-sample returns on 153 anomalies in equities documented in the academic literature. We show that machine learning techniques that aggregate all the anomalies into one mispricing signal are profitable around the globe and survive on a liquid universe of stocks. We investigate the value of international evidence for selection of quantitative strategies that outperform out-of-sample. Past performance of quantitative strategies in regions other than the United States does not help to pick out-of-sample winning strategies in the U.S. Past evidence from the U.S., however, captures most of the return predictability outside the U.S.
result_subspec SCOPUS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50206
reportyear 2022
num_of_auth 2
mrcbC52 2 4 R hod 4 4rh 4 20250310151316.1 20250310153313.5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0311938
mrcbC61 1
cooperation
ARLID cav_un_auth*0300540
name University of Cambridge
country GB
confidential S
article_num 100588
mrcbC91 C
mrcbT16-e BUSINESSFINANCE
mrcbT16-j 1.502
mrcbT16-s 1.661
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2021
mrcbTft \nSoubory v repozitáři: hronec-533567.pdf
mrcbU14 85089487417 SCOPUS
mrcbU24 PUBMED
mrcbU34 000808118800002 WOS
mrcbU63 cav_un_epca*0258506 Journal of Financial Markets Roč. 56 č. 1 2021 1386-4181 1878-576X Elsevier