bibtype J - Journal Article
ARLID 0533568
utime 20240103224611.9
mtime 20201026235959.9
SCOPUS 85141848909
WOS 000883967300012
DOI 10.1162/rest_a_01003
title (primary) (eng) Asymmetric Network Connectedness of Fears
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0251799
ISSN 0034-6535
title Review of Economics and Statistics
volume_id 104
volume 6 (2022)
page_num 1304-1316
publisher
name MIT Press
keyword Implied Volatility
keyword Asymmetric Connectedness
keyword U.S. Financial Sector
author (primary)
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0398135
name1 Bevilacqua
name2 M.
country GB
author
ARLID cav_un_auth*0398136
name1 Tunaru
name2 R.
country GB
source
url http://library.utia.cas.cz/separaty/2020/E/barunik-0533568.pdf
source
url https://direct.mit.edu/rest/article-abstract/104/6/1304/97705/Asymmetric-Network-Connectedness-of-Fears?redirectedFrom=fulltext
cas_special
project
project_id GX19-28231X
agency GA ČR
country CZ
ARLID cav_un_auth*0385135
abstract (eng) This paper introduces forward-looking measures of the network connectedness of fears in the financial system, arising due to the good and bad beliefs of market participants about uncertainty that spreads unequally across a network of banks. We argue that this asymmetric network structure extracted from call and put traded option prices of the main U.S. banks contains valuable information for predicting macroeconomic conditions and economic uncertainty, and it can serve as a tool for forward-looking systemic risk monitoring.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2023
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0311937
cooperation
ARLID cav_un_auth*0309067
name London School of Economics
country GB
cooperation
ARLID cav_un_auth*0298141
name University of Sussex
country GB
confidential S
mrcbC86 1* Article Economics|Social Sciences Mathematical Methods
mrcbC91 C
mrcbT16-e ECONOMICS|SOCIALSCIENCESMATHEMATICALMETHODS
mrcbT16-j 8.761
mrcbT16-s 8.371
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2022
mrcbU14 85141848909 SCOPUS
mrcbU24 PUBMED
mrcbU34 000883967300012 WOS
mrcbU63 cav_un_epca*0251799 Review of Economics and Statistics 0034-6535 1530-9142 Roč. 104 č. 6 2022 1304 1316 MIT Press