bibtype J - Journal Article
ARLID 0533622
utime 20240903190026.7
mtime 20201028235959.9
SCOPUS 85092929530
WOS 000585454200001
DOI 10.3390/math8101767
title (primary) (eng) On Tail Dependence and Multifractality
specification
page_count 13 s.
media_type E
serial
ARLID cav_un_epca*0453601
ISSN 2227-7390
title Mathematics
volume_id 8
publisher
name MDPI
keyword multifractality
keyword tail dependence
keyword serial correlation
keyword copulas
author (primary)
ARLID cav_un_auth*0294289
name1 Avdulaj
name2 Krenar
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
country CZ
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
share 50
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/E/kristoufek-0533622.pdf
source
url https://www.mdpi.com/2227-7390/8/10/1767
cas_special
project
project_id GJ17-12386Y
agency GA ČR
country CZ
ARLID cav_un_auth*0351447
abstract (eng) We study whether, and if yes then how, a varying auto-correlation structure in different parts of distributions is reflected in the multifractal properties of a dynamic process. Utilizing the quantile autoregressive process with Gaussian copula using three popular estimators of the generalized Hurst exponent, our Monte Carlo simulation study shows that such dynamics translate into multifractal dynamics of the generated series. The tail-dependence of the auto-correlations forms strong enough non-linear dependencies to be reflected in the estimated multifractal spectra and separated from the case of the standard auto-regressive process. With a quick empirical example from financial markets, we argue that the interaction is more important for the asymmetric tail dependence. In addition, we discuss and explain the often reported paradox of higher multifractality of shuffled series compared to the original financial series. In short, the quantile-dependent auto-correlation structures qualify as sources of multifractality and they are worth further theoretical examination.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2021
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0312007
mrcbC61 1
confidential S
article_num 1767
mrcbC86 3+4 Article Mathematics
mrcbC91 A
mrcbT16-e MATHEMATICS
mrcbT16-i 1.35574
mrcbT16-j 0.354
mrcbT16-s 0.495
mrcbT16-B 17.45
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2020
mrcbU14 85092929530 SCOPUS
mrcbU24 PUBMED
mrcbU34 000585454200001 WOS
mrcbU63 cav_un_epca*0453601 Mathematics 2227-7390 2227-7390 Roč. 8 č. 10 2020 MDPI ONLINE