bibtype C - Conference Paper (international conference)
ARLID 0533751
utime 20240111141043.3
mtime 20201102235959.9
SCOPUS 85094851129
DOI 10.1109/CVPR42600.2020.00681
title (primary) (eng) Sub-Frame Appearance and 6D Pose Estimation of Fast Moving Objects
specification
page_count 9 s.
media_type E
serial
ARLID cav_un_epca*0533750
ISBN 978-1-7281-7169-2
ISSN 1063-6919
title 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
page_num 6777-6785
publisher
place Piscataway
name IEEE
year 2020
keyword tracking
keyword deblurring
keyword matting
keyword deblatting
author (primary)
ARLID cav_un_auth*0352947
name1 Rozumnyi
name2 D.
country CZ
author
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0075799
name1 Matas
name2 J.
country CZ
source
source_type pdf
url http://library.utia.cas.cz/separaty/2020/ZOI/sroubek-0533751.pdf
source_size 1MB
cas_special
project
project_id GA18-05360S
agency GA ČR
ARLID cav_un_auth*0361425
abstract (eng) We have proposed a method for sub-frame appearance and 6D pose estimation of fast moving objects. We propose a novel method that tracks fast moving objects, mainly non-uniform spherical, in full 6 degrees of freedom, estimating simultaneously their 3D motion trajectory, 3D pose and object appearance changes with a time step that is a fraction of the video frame exposure time. The sub-frame object localization and appearance estimation allows realistic temporal super-resolution and precise shape estimation. The method, called TbD-3D (Tracking by Deblatting in 3D) relies on a novel reconstruction algorithm which solves a piece-wise deblurring and matting problem. The 3D rotation is estimated by minimizing the reprojection error. As a second contribution, we present a new challenging dataset with fast moving objects that change their appearance and distance to the camera. High-speed camera recordings with zero lag between frame exposures were used to generate videos with different frame rates annotated with ground-truth trajectory and pose.
action
ARLID cav_un_auth*0398417
name 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
dates 20200616
mrcbC20-s 20200618
place Seattle
country US
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2021
num_of_auth 4
mrcbC52 4 A sml 4as 20231122145221.1
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0312101
confidential S
contract
name IEEE COPYRIGHT AND CONSENT FORM
date 20200311
arlyear 2020
mrcbTft \nSoubory v repozitáři: sroubek-0533751-CopyrightReceipt1.pdf
mrcbU14 85094851129 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf 1MB
mrcbU63 cav_un_epca*0533750 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 978-1-7281-7169-2 1063-6919 2575-7075 6777 6785 Piscataway IEEE 2020