bibtype C - Conference Paper (international conference)
ARLID 0533825
utime 20240103224631.4
mtime 20201102235959.9
SCOPUS 85098623422
DOI 10.1109/ICIP40778.2020.9191320
title (primary) (eng) Automated Object Labeling For CNN-Based Image Segmentation
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0533760
ISBN 978-1-7281-6396-3
ISSN 1522-4880
title 2020 IEEE International Conference on Image Processing (ICIP)
page_num 2036-2040
publisher
place Piscataway
name IEEE
year 2020
keyword CNN
keyword SURF
keyword U-net
keyword automated object labeling
keyword image segmentation
author (primary)
ARLID cav_un_auth*0283562
name1 Novozámský
name2 Adam
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0398453
name1 Vít
name2 D.
country CZ
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0044239
name1 Franc
name2 J.
country CZ
author
ARLID cav_un_auth*0038064
name1 Krbálek
name2 M.
country CZ
author
ARLID cav_un_auth*0332672
name1 Bílková
name2 Zuzana
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101238
name1 Zitová
name2 Barbara
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/ZOI/novozamsky-0533825.pdf
cas_special
project
project_id GA18-05360S
agency GA ČR
ARLID cav_un_auth*0361425
project
project_id TN01000024
agency GA TA ČR
country CZ
ARLID cav_un_auth*0376535
project
project_id AP1701
agency AV ČR
country CZ
ARLID cav_un_auth*0349658
abstract (eng) Deep learning-based methods for classification and segmentation require large training sets. Generating training data is often a tedious and expensive task. In industrial applications, such as automated visual inspection of products in an assemble line, objects for classification are well defined yet labeled data are difficult to obtain. To alleviate the problem of manual labeling, we propose to train a convolutional neural network with an automatically generated training set using a naive classifier with handcrafted features. We show that when the naive classifier has high precision then the trained network has both high precision and recall despite the low recall of the naive classifier. We demonstrate the proposed methodology on real scenario of detecting a car coolant tank. However, the proposed methodology facilitates collection of train data for a wider type of CNN based methods such as near-duplicate image detection or segmenting tampered areas of images.
action
ARLID cav_un_auth*0398419
name 2020 IEEE International Conference on Image Processing (ICIP)
dates 20201025
place Abu Dhabi
country AE
mrcbC20-s 20201028
RIV JC
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2021
num_of_auth 7
presentation_type PR
permalink http://hdl.handle.net/11104/0312104
cooperation
ARLID cav_un_auth*0377559
name ČVUT v Praze, Fakulta jaderného a fyzikálního inženýrství
institution ČVUT FJFI
country CZ
confidential S
arlyear 2020
mrcbU02 C
mrcbU14 85098623422 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0533760 2020 IEEE International Conference on Image Processing (ICIP) 978-1-7281-6396-3 1522-4880 2381-8549 2036 2040 Piscataway IEEE 2020