bibtype |
J -
Journal Article
|
ARLID |
0533846 |
utime |
20240103224633.2 |
mtime |
20201103235959.9 |
SCOPUS |
85089355783 |
WOS |
000559295300001 |
DOI |
10.1007/s00026-020-00506-3 |
title
(primary) (eng) |
Cyclic flats of a polymatroid |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0311471 |
ISSN |
0218-0006 |
title
|
Annals of Combinatorics |
volume_id |
24 |
volume |
4 (2020) |
page_num |
637-648 |
publisher |
|
|
keyword |
polymatroid |
keyword |
cyclic flat |
keyword |
convolution |
keyword |
ranked lattice |
author
(primary) |
ARLID |
cav_un_auth*0398469 |
name1 |
Csirmaz |
name2 |
Laszlo |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
country |
HU |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA19-04579S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0380558 |
|
abstract
(eng) |
Polymatroids can be considered as “fractional matroids” where the rank function is not required to be integer valued. Many, but not every notion in matroid terminology translates naturally to polymatroids. Defining cyclic flats of a polymatroid carefully, the characterization by Bonin and de Mier of the ranked lattice of cyclic flats carries over to polymatroids. The main tool, which might be of independent interest, is a convolution-like method which creates a polymatroid from a ranked lattice and a discrete measure. Examples show the ease of using convolution technique. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2021 |
num_of_auth |
1 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0312098 |
confidential |
S |
mrcbC86 |
3+4 Article Mathematics Applied |
mrcbC91 |
A |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-i |
0.00138 |
mrcbT16-j |
0.614 |
mrcbT16-s |
0.467 |
mrcbT16-B |
40.754 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q4 |
arlyear |
2020 |
mrcbU14 |
85089355783 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000559295300001 WOS |
mrcbU63 |
cav_un_epca*0311471 Annals of Combinatorics 0218-0006 0219-3094 Roč. 24 č. 4 2020 637 648 Springer |
|