bibtype J - Journal Article
ARLID 0533846
utime 20240103224633.2
mtime 20201103235959.9
SCOPUS 85089355783
WOS 000559295300001
DOI 10.1007/s00026-020-00506-3
title (primary) (eng) Cyclic flats of a polymatroid
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0311471
ISSN 0218-0006
title Annals of Combinatorics
volume_id 24
volume 4 (2020)
page_num 637-648
publisher
name Springer
keyword polymatroid
keyword cyclic flat
keyword convolution
keyword ranked lattice
author (primary)
ARLID cav_un_auth*0398469
name1 Csirmaz
name2 Laszlo
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country HU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/MTR/studeny-csirmaz-0533846.pdf
source
url https://link.springer.com/article/10.1007/s00026-020-00506-3
cas_special
project
project_id GA19-04579S
agency GA ČR
country CZ
ARLID cav_un_auth*0380558
abstract (eng) Polymatroids can be considered as “fractional matroids” where the rank function is not required to be integer valued. Many, but not every notion in matroid terminology translates naturally to polymatroids. Defining cyclic flats of a polymatroid carefully, the characterization by Bonin and de Mier of the ranked lattice of cyclic flats carries over to polymatroids. The main tool, which might be of independent interest, is a convolution-like method which creates a polymatroid from a ranked lattice and a discrete measure. Examples show the ease of using convolution technique.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2021
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0312098
confidential S
mrcbC86 3+4 Article Mathematics Applied
mrcbC91 A
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-i 0.00138
mrcbT16-j 0.614
mrcbT16-s 0.467
mrcbT16-B 40.754
mrcbT16-D Q3
mrcbT16-E Q4
arlyear 2020
mrcbU14 85089355783 SCOPUS
mrcbU24 PUBMED
mrcbU34 000559295300001 WOS
mrcbU63 cav_un_epca*0311471 Annals of Combinatorics 0218-0006 0219-3094 Roč. 24 č. 4 2020 637 648 Springer