bibtype C - Conference Paper (international conference)
ARLID 0535433
utime 20250123090435.9
mtime 20201202235959.9
SCOPUS 85097519102
WOS 001351026500065
DOI 10.1007/978-3-030-63007-2_65
title (primary) (eng) Transfer Learning of Mixture Texture Models
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0535432
ISBN 978-3-030-63006-5
ISSN 0302-9743
title Computational Collective Intelligence
page_num 825-837
publisher
place Cham
name Springer Nature Switzerland AG
year 2020
editor
name1 Nguyen
name2 N. T.
editor
name1 Hoang
name2 B. H.
editor
name1 Huynh
name2 C. P.
editor
name1 Hwang
name2 D.
editor
name1 Trawinski
name2 B.
editor
name1 Vossen
name2 G.
keyword Texture modeling
keyword transfer learning
keyword compound random field model
keyword bidirectional texture function
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101100
name1 Havlíček
name2 Vojtěch
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/RO/haindl-0535433.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) A transfer learning approach for multidimensional parametric mixture random field-based textural representation is introduced. The proposed transfer learning approach allows alleviating the multidimensional mixture models requirement for sufficiently large, but not always available, learning data sets. These compound random field models consist of an underlying structure model that controls transitions between several sub-models, each of them has different characteristics. The structure model proposed is a two-dimensional probabilistic mixture model, either of the Bernoulli or Gaussian mixture type. Local textures are modeled using the fully multispectral three-dimensional Gaussian mixture sub-models. Both presented compound random field models allow the reproduction of, compresses, edits, and enlarges a given measured color, multispectral, or bidirectional texture function (BTF) texture so that ideally, both measured and synthetic textures are visually indiscernible.
action
ARLID cav_un_auth*0400273
name International Conference on Computational Collective Intelligence 2020 /12./
dates 20201130
mrcbC20-s 20201203
place Da Nang
country VN
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2021
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0314144
confidential S
arlyear 2020
mrcbU14 85097519102 SCOPUS
mrcbU24 PUBMED
mrcbU34 001351026500065 WOS
mrcbU63 cav_un_epca*0535432 Computational Collective Intelligence 978-3-030-63006-5 0302-9743 1611-3349 825 837 Cham Springer Nature Switzerland AG 2020 Lecture Notes in Artificial Intelligence 12496
mrcbU67 340 Nguyen N. T.
mrcbU67 340 Hoang B. H.
mrcbU67 340 Huynh C. P.
mrcbU67 340 Hwang D.
mrcbU67 340 Trawinski B.
mrcbU67 340 Vossen G.