| bibtype |
J -
Journal Article
|
| ARLID |
0535809 |
| utime |
20240903170647.1 |
| mtime |
20201208235959.9 |
| WOS |
000596316600004 |
| SCOPUS |
85100218988 |
| DOI |
10.14736/kyb-2020-5-0886 |
| title
(primary) (eng) |
One-adhesive polymatroids |
| specification |
| page_count |
17 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0297163 |
| ISSN |
0023-5954 |
| title
|
Kybernetika |
| volume_id |
56 |
| volume |
5 (2020) |
| page_num |
886-902 |
| publisher |
| name |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
|
| keyword |
polymatroid |
| keyword |
amalgam |
| keyword |
adhesive polymatroid |
| keyword |
entropy function |
| keyword |
polyhedral cone |
| author
(primary) |
| ARLID |
cav_un_auth*0398469 |
| name1 |
Csirmaz |
| name2 |
Laszlo |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept (eng) |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department (eng) |
MTR |
| country |
HU |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| project |
| project_id |
GA19-04579S |
| agency |
GA ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0380558 |
|
| abstract
(eng) |
Adhesive polymatroids were defined by F. Matus motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way, and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2021 |
| num_of_auth |
1 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0314147 |
| confidential |
S |
| mrcbC86 |
3+4 Article Computer Science Cybernetics |
| mrcbC91 |
A |
| mrcbT16-e |
COMPUTERSCIENCE.CYBERNETICS |
| mrcbT16-f |
0.800 |
| mrcbT16-g |
0.056 |
| mrcbT16-h |
11.3 |
| mrcbT16-i |
0.00083 |
| mrcbT16-j |
0.262 |
| mrcbT16-k |
903 |
| mrcbT16-q |
43 |
| mrcbT16-s |
0.218 |
| mrcbT16-y |
32.88 |
| mrcbT16-x |
0.95 |
| mrcbT16-3 |
181 |
| mrcbT16-4 |
Q3 |
| mrcbT16-5 |
0.808 |
| mrcbT16-6 |
54 |
| mrcbT16-7 |
Q4 |
| mrcbT16-B |
14.97 |
| mrcbT16-C |
10.9 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q4 |
| mrcbT16-M |
0.15 |
| mrcbT16-N |
Q4 |
| mrcbT16-P |
10.87 |
| arlyear |
2020 |
| mrcbU14 |
85100218988 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000596316600004 WOS |
| mrcbU63 |
cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 56 č. 5 2020 886 902 Ústav teorie informace a automatizace AV ČR, v. v. i. |
|