bibtype C - Conference Paper (international conference)
ARLID 0536061
utime 20240103224926.2
mtime 20201214235959.9
SCOPUS 85098241378
DOI 10.1109/CoDIT49905.2020.9263867
title (primary) (eng) Output-Feedback Model Predictive Control for Systems under Uniform Disturbances
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0536369
ISBN 978-1-7281-5954-6
ISSN Proceedings of the 7th International Conference on Control, Decision and Information Technologies (CoDIT) 2020
title Proceedings of the 7th International Conference on Control, Decision and Information Technologies (CoDIT) 2020
page_num 897-902
publisher
place Piscataway
name IEEE
year 2020
keyword output-feedback model predictive control
keyword bounded uncertainty
keyword Bayesian state estimation
keyword parallel kinematic machine
author (primary)
ARLID cav_un_auth*0382598
name1 Kuklišová Pavelková
name2 Lenka
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101064
name1 Belda
name2 Květoslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/AS/kuklisova-0536061.pdf
cas_special
project
project_id GA18-15970S
agency GA ČR
country CZ
ARLID cav_un_auth*0362986
abstract (eng) The paper deals with an output-feedback model predictive control (MPC) for discrete-time systems influenced by bounded disturbances. The proposed MPC combines a state-space design and a state estimation. The state estimates are obtained by a specific uniform Bayesian filter. It provides an evident disturbance attenuation in the estimated state. The MPC design considers a quadratic cost function that incorporates penalties on the tracking error, on the actuation effort and on the system output increments. The theoretical results are completed by illustrative examples using a dynamic model of a parallel kinematic machine as a controlled system.
action
ARLID cav_un_auth*0400949
name International Conference on Control, Decision and Information Technologies 2020 (CoDIT 2020) /7./
dates 20200629
mrcbC20-s 20200702
place Prague
country CZ
RIV BC
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2021
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0314148
confidential S
arlyear 2020
mrcbU14 85098241378 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0536369 Proceedings of the 7th International Conference on Control, Decision and Information Technologies (CoDIT) 2020 978-1-7281-5954-6 2576-3555 897 902 Piscataway IEEE 2020