| bibtype |
J -
Journal Article
|
| ARLID |
0536098 |
| utime |
20240103224929.5 |
| mtime |
20201214235959.9 |
| WOS |
000595659200015 |
| DOI |
10.3934/dcdss.2020322 |
| title
(primary) (eng) |
Numerical approximation of von Kármán viscoelastic plates |
| specification |
| page_count |
21 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0310286 |
| ISSN |
1937-1632 |
| title
|
Discrete and Continuous Dynamical systems - Series S |
| part_title |
Series S |
| volume_id |
14 |
| volume |
1 (2021) |
| page_num |
299-319 |
| publisher |
|
|
| keyword |
Viscoelasticity |
| keyword |
metric gradient ows |
| keyword |
numerics |
| author
(primary) |
| ARLID |
cav_un_auth*0327068 |
| name1 |
Friedrich |
| name2 |
M. |
| country |
DE |
|
| author
|
| ARLID |
cav_un_auth*0101142 |
| share |
34 |
| name1 |
Kružík |
| name2 |
Martin |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0292941 |
| share |
33 |
| name1 |
Valdman |
| name2 |
Jan |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| project |
| ARLID |
cav_un_auth*0347023 |
| project_id |
GA17-04301S |
| agency |
GA ČR |
|
| abstract
(eng) |
We consider metric gradient ows and their discretizations in time and space. We prove an abstract convergence result for time-space discretizations and identify their limits as curves of maximal slope. As an application, we consider a nite element approximation of a quasistatic evolution for viscoelastic von Karman plates. Computational experiments exploiting C1 nite elements are provided, too. |
| reportyear |
2022 |
| RIV |
BA |
| result_subspec |
WOS |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| num_of_auth |
3 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0314166 |
| confidential |
S |
| mrcbC86 |
2 Article Mathematics Applied |
| mrcbC91 |
C |
| mrcbT16-e |
MATHEMATICS.APPLIED |
| mrcbT16-f |
1.622 |
| mrcbT16-g |
0.588 |
| mrcbT16-h |
2.9 |
| mrcbT16-i |
0.00291 |
| mrcbT16-j |
0.492 |
| mrcbT16-k |
1644 |
| mrcbT16-q |
43 |
| mrcbT16-s |
0.488 |
| mrcbT16-y |
32 |
| mrcbT16-x |
1.9 |
| mrcbT16-3 |
804 |
| mrcbT16-4 |
Q2 |
| mrcbT16-5 |
1.732 |
| mrcbT16-6 |
294 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
65.7 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q3 |
| mrcbT16-M |
1.39 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
65.73 |
| arlyear |
2021 |
| mrcbU14 |
SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000595659200015 WOS |
| mrcbU63 |
cav_un_epca*0310286 Discrete and Continuous Dynamical systems - Series S Series S 1937-1632 1937-1179 Roč. 14 č. 1 2021 299 319 AIMS Press |
|