| bibtype |
J -
Journal Article
|
| ARLID |
0536375 |
| utime |
20240103224952.6 |
| mtime |
20201217235959.9 |
| SCOPUS |
85089825891 |
| WOS |
000562713400002 |
| DOI |
10.21136/CMJ.2020.0144-19 |
| title
(primary) (eng) |
Attractors for stochastic reaction-diffusion equation with additive homogeneous noise |
| specification |
| page_count |
23 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256482 |
| ISSN |
0011-4642 |
| title
|
Czechoslovak Mathematical Journal |
| volume_id |
71 |
| volume |
1 (2021) |
| page_num |
21-43 |
| publisher |
|
|
| keyword |
reaction-diffusion equation |
| keyword |
random attractor |
| keyword |
spatially homogeneous noise |
| author
(primary) |
| ARLID |
cav_un_auth*0370372 |
| name1 |
Slavík |
| name2 |
Jakub |
| institution |
UTIA-B |
| full_dept (cz) |
Stochastická informatika |
| full_dept (eng) |
Department of Stochastic Informatics |
| department (cz) |
SI |
| department (eng) |
SI |
| full_dept |
Department of Stochastic Informatics |
| country |
CZ |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| abstract
(eng) |
We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space Rd driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted L2-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories. |
| result_subspec |
WOS |
| RIV |
BB |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10103 |
| reportyear |
2022 |
| num_of_auth |
1 |
| mrcbC52 |
4 A sml 4as 20231122145406.9 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0314165 |
| confidential |
S |
| contract |
| name |
Exclusive licence agreement |
| date |
20190918 |
|
| mrcbC86 |
Article Mathematics |
| mrcbC91 |
C |
| mrcbT16-e |
MATHEMATICS |
| mrcbT16-f |
0.413 |
| mrcbT16-g |
0.078 |
| mrcbT16-h |
26.3 |
| mrcbT16-i |
0.00105 |
| mrcbT16-j |
0.263 |
| mrcbT16-k |
1270 |
| mrcbT16-q |
35 |
| mrcbT16-s |
0.263 |
| mrcbT16-y |
15.51 |
| mrcbT16-x |
0.35 |
| mrcbT16-3 |
89 |
| mrcbT16-4 |
Q3 |
| mrcbT16-5 |
0.312 |
| mrcbT16-6 |
77 |
| mrcbT16-7 |
Q4 |
| mrcbT16-C |
2.6 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q4 |
| mrcbT16-M |
0.36 |
| mrcbT16-N |
Q4 |
| mrcbT16-P |
2.553 |
| arlyear |
2021 |
| mrcbTft |
\nSoubory v repozitáři: slavik-0536375-license-10163-signed.pdf |
| mrcbU14 |
85089825891 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000562713400002 WOS |
| mrcbU63 |
cav_un_epca*0256482 Czechoslovak Mathematical Journal 0011-4642 1572-9141 Roč. 71 č. 1 2021 21 43 Springer |
|