bibtype C - Conference Paper (international conference)
ARLID 0536400
utime 20240103224953.7
mtime 20201218235959.9
SCOPUS 85098000454
WOS 000636709500140
DOI 10.1063/5.0026561
title (primary) (eng) On vectorized MATLAB implementation of elastoplastic problems
specification
page_count 4 s.
media_type P
serial
ARLID cav_un_epca*0536399
ISBN 978-0-7354-4025-8
ISSN 0094-243X
title AIP Conference Proceedings, Volume 2293, Issue 1 : INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019
publisher
place Melville
name AIP Publishing
year 2020
keyword MATLAB
keyword tangent stiffness matrices
keyword vectorizations
author (primary)
ARLID cav_un_auth*0296439
name1 Čermák
name2 Martin
institution UGN-S
full_dept (cz) Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations
full_dept (eng) Department of applied mathematics and computer science and Department IT4Innovations
full_dept Applied Mathematics and Computer Science & IT4Innovations
country CZ
garant K
fullinstit Ústav geoniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0221817
name1 Sysala
name2 Stanislav
institution UGN-S
full_dept (cz) Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations
full_dept Department of applied mathematics and computer science and Department IT4Innovations
full_dept Applied Mathematics and Computer Science & IT4Innovations
country CZ
fullinstit Ústav geoniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/MTR/valdman-0536400.pdf
cas_special
project
project_id GA17-04301S
agency GA ČR
ARLID cav_un_auth*0347023
project
project_id GA19-11441S
agency GA ČR
country CZ
ARLID cav_un_auth*0386119
project
project_id LO1404
agency GA MŠk
country CZ
ARLID cav_un_auth*0401334
abstract (eng) We propose an effective and flexible way to assemble tangent stiffness matrices in MATLAB. Our technique is applied to elastoplastic problems formulated in terms of displacements and discretized by the finite element method. The tangent stiffness matrix is repeatedly assembled in each time step and in each iteration of the semismooth Newton method. We consider von Mises and Drucker-Prager yield criteria, linear and quadratic finite elements in two and three space dimensions. Our codes are vectorized and available for download. Comparisons with other available MATLAB codes show, that our technique is also efficient for purely elastic problems. In elastoplasticity, the assembly times are linearly proportional to the number of integration points.
action
ARLID cav_un_auth*0401333
name INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019
dates 20190923
mrcbC20-s 20190928
place Rhodos
country GR
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2021
presentation_type PR
inst_support RVO:67985556
inst_support RVO:68145535
permalink http://hdl.handle.net/11104/0314169
mrcbC61 1
confidential S
article_num 330003
mrcbC86 3+4 Proceedings Paper Mathematical Computational Biology|Mathematics Applied|Mathematics Interdisciplinary Applications|Physics Mathematical|Statistics Probability
mrcbT16-s 0.182
mrcbT16-E Q4
arlyear 2020
mrcbU14 85098000454 SCOPUS
mrcbU24 PUBMED
mrcbU34 000636709500140 WOS
mrcbU63 cav_un_epca*0536399 AIP Conference Proceedings, Volume 2293, Issue 1 : INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 978-0-7354-4025-8 0094-243X Melville AIP Publishing 2020