bibtype J - Journal Article
ARLID 0536977
utime 20240903170647.4
mtime 20210106235959.9
WOS 000605763100006
SCOPUS 85100203364
DOI 10.14736/kyb-2020-6-1090
title (primary) (eng) On typical encodings of multivariate ergodic sources
specification
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 56
volume 6 (2020)
page_num 1090-1110
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword entropy
keyword entropy rate
keyword multivariate source
keyword ergodic source
keyword a.e.p. property
author (primary)
ARLID cav_un_auth*0219359
name1 Kupsa
name2 Michal
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
country CZ
share 100
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2020/SI/kupsa-0536977.pdf
source
url http://www.kybernetika.cz/content/2020/6/1090
cas_special
abstract (eng) We show that the typical coordinate-wise encoding of multivariate ergodic source into prescribed alphabets has the entropy profile close to the convolution of the entropy profile of the source and the modular polymatroid that is determined by the cardinalities of the output alphabets. We show that the proportion of the exceptional encodings that are not close to the convolution goes to zero doubly exponentially. The result holds for a class of multivariate sources that satisfy asymptotic equipartition property described via the mean fluctuation of the information functions. This class covers asymptotically mean stationary processes with ergodic mean, ergodic processes, irreducible Markov chains with an arbitrary initial distribution. We also proved that typical encodings yield the asymptotic equipartition property for the output variables. These asymptotic results are based on an explicit lower bound of the proportion of encodings that transform a multivariate random variable into a variable with the entropy profile close to the suitable convolution.\n\n
result_subspec WOS
RIV BD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2021
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0314744
confidential S
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbC91 A
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-i 0.00083
mrcbT16-j 0.262
mrcbT16-s 0.218
mrcbT16-B 14.97
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2020
mrcbU14 85100203364 SCOPUS
mrcbU24 PUBMED
mrcbU34 000605763100006 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 56 č. 6 2020 1090 1110 Ústav teorie informace a automatizace AV ČR, v. v. i.