bibtype J - Journal Article
ARLID 0537229
utime 20240103225102.1
mtime 20210111235959.9
SCOPUS 85096220581
WOS 000600838700007
DOI 10.1016/j.apal.2020.102916
title (primary) (eng) Lindström theorems in graded model theory
specification
page_count 30 s.
media_type P
serial
ARLID cav_un_epca*0256135
ISSN 0168-0072
title Annals of Pure and Applied Logic
volume_id 172
publisher
name Elsevier
keyword Mathematical fuzzy logic
keyword Lindström theorem
keyword Abstract model theory
keyword Many-valued predicate logics
author (primary)
ARLID cav_un_auth*0382241
name1 Badia
name2 G.
country AU
share 50
author
ARLID cav_un_auth*0293476
name1 Noguera
name2 Carles
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 50
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/MTR/noguera-0537229.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0168007220301408
cas_special
abstract (eng) Stemming from the works of Petr Hájek on mathematical fuzzy logic, graded model theory has been developed by several authors in the last two decades as an extension of classical model theory that studies the semantics of many-valued predicate logics. In this paper we take the first steps towards an abstract formulation of this model theory. We give a general notion of abstract logic based on many-valued models and prove six Lindström-style characterizations of maximality of first-order logics in terms of metalogical properties such as compactness, abstract completeness, the Löwenheim–Skolem property, the Tarski union property, and the Robinson property, among others. As necessary technical restrictions, we assume that the models are valued on finite MTL-chains and the language has a constant for each truth-value.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2022
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0314998
mrcbC61 1
confidential S
article_num 102916
mrcbC86 3+4 Article Mathematics Applied|Mathematics|Logic
mrcbC91 C
mrcbT16-e LOGIC|MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-j 0.731
mrcbT16-s 0.872
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2021
mrcbU14 85096220581 SCOPUS
mrcbU24 PUBMED
mrcbU34 000600838700007 WOS
mrcbU63 cav_un_epca*0256135 Annals of Pure and Applied Logic 0168-0072 1873-2461 Roč. 172 č. 3 2021 Elsevier