bibtype J - Journal Article
ARLID 0538109
utime 20240103225215.3
mtime 20210120235959.9
SCOPUS 85095722107
WOS 000586815000001
DOI 10.1080/15361055.2020.1820805
title (primary) (eng) Detection of Alfvén Eigenmodes on COMPASS with Generative Neural Networks
specification
page_count 10 s.
serial
ARLID cav_un_epca*0257867
ISSN 1536-1055
title Fusion Science and Technology
volume_id 76
volume 8 (2020)
page_num 962-971
publisher
name Taylor & Francis
keyword Alfvén eigenmodes
keyword generative models
keyword neural networks
keyword Tokamak
author (primary)
ARLID cav_un_auth*0398466
name1 Škvára
name2 Vít
institution UFP-V
full_dept (cz) Tokamak
full_dept (eng) Tokamak
department (cz) TOK
department (eng) TOK
country CZ
fullinstit Ústav fyziky plazmatu AV ČR, v. v. i.
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0307300
name1 Pevný
name2 T.
country CZ
mrcb701-q Ceské vysoké ucení technické v Praze
author
ARLID cav_un_auth*0257948
name1 Seidl
name2 Jakub
institution UFP-V
full_dept (cz) Tokamak
full_dept Tokamak
department (cz) TOK
department TOK
country CZ
fullinstit Ústav fyziky plazmatu AV ČR, v. v. i.
author
ARLID cav_un_auth*0325242
name1 Havránek
name2 Aleš
institution UFP-V
full_dept (cz) Tokamak
full_dept Tokamak
department (cz) TOK
department TOK
country CZ
fullinstit Ústav fyziky plazmatu AV ČR, v. v. i.
author
ARLID cav_un_auth*0395810
name1 Tskhakaya
name2 David
institution UFP-V
full_dept (cz) Tokamak
full_dept Tokamak
department (cz) TOK
department TOK
country AT
fullinstit Ústav fyziky plazmatu AV ČR, v. v. i.
source
url https://www.tandfonline.com/doi/pdf/10.1080/15361055.2020.1820805?needAccess=true&
cas_special
project
project_id GA18-21409S
agency GA ČR
ARLID cav_un_auth*0374053
project
project_id EF16_019/0000768
agency GA MŠk
country CZ
ARLID cav_un_auth*0372154
project
project_id 633053
agency EC
country XE
ARLID cav_un_auth*0318270
abstract (eng) Chirping Alfvén eigenmodes were observed at the COMPASS tokamak. They are believed to be driven by runaway electrons (REs), and as such, they provide a unique opportunity to study the physics of nonlinear interaction between REs and electromagnetic instabilities, including important topics of RE mitigation and losses. On COMPASS, they can be detected from spectrograms of certain magnetic probes. So far, their detection has required much manual effort since they occur rarely. We strive to automate this process using machine learning techniques based on generative neural networks. We present two different models that are trained using a smaller, manually labeled database and a larger unlabeled database from COMPASS experiments. In a number of experiments, we demonstrate that our approach is a viable option for automated detection of rare instabilities in tokamak plasma.
result_subspec WOS
RIV BC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2021
num_of_auth 6
mrcbC47 UTIA-B 10000 10100 10102
mrcbC55 UTIA-B BC
inst_support RVO:61389021
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0315921
cooperation
ARLID cav_un_auth*0369599
name Ceské vysoké ucení technické v Praze
mrcbC86 1 Article Nuclear Science Technology
mrcbC91 A
mrcbT16-e NUCLEARSCIENCETECHNOLOGY
mrcbT16-i 0.00286
mrcbT16-j 0.364
mrcbT16-s 0.749
mrcbT16-B 29.374
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2020
mrcbU01 Fusion Science and Technology 15361055 19437641 2020-01-01 76 8
mrcbU14 85095722107 SCOPUS
mrcbU34 000586815000001 WOS
mrcbU63 cav_un_epca*0257867 Fusion Science and Technology 1536-1055 1943-7641 Roč. 76 č. 8 2020 962 971 Taylor & Francis