bibtype C - Conference Paper (international conference)
ARLID 0539983
utime 20250123091652.6
mtime 20210222235959.9
SCOPUS 85114463462
WOS 001231262100039
title (primary) (eng) Dual formulation of the chordal graph conjecture
specification
page_count 12 s.
media_type E
serial
ARLID cav_un_epca*0542414
ISSN Proceedings of Machine Learning Research, Volume 138: International Conference on Probabilistic Graphical Models, 23-25 September 2020, Hotel Comwell Rebild Bakker, Skørping, Denmark
title Proceedings of Machine Learning Research, Volume 138: International Conference on Probabilistic Graphical Models, 23-25 September 2020, Hotel Comwell Rebild Bakker, Skørping, Denmark
page_num 449-460
publisher
place Brookline
name JMLR, Inc. and Microtome Publishing
year 2021
editor
name1 Nielsen
name2 T. D.
editor
name1 Jaeger
name2 M.
keyword Learning decomposable models
keyword chordal graph polytope
keyword clutter inequalities
keyword dual polyhedron
keyword chordal graph inequalities
author (primary)
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0332730
name1 Cussens
name2 J.
country GB
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/MTR/studeny-0539983.pdf
cas_special
project
project_id GA19-04579S
agency GA ČR
country CZ
ARLID cav_un_auth*0380558
abstract (eng) The idea of an integer linear programming approach to structural learning of decomposable graphical models led to the study of the so-called chordal graph polytope. An open mathematical question is what is the minimal set of linear inequalities defining this polytope. Some time ago we came up with a specific conjecture that the polytope is defined by so-called clutter inequalities. In this theoretical paper we give a dual formulation of the conjecture. Specifically, we introduce a certain dual polyhedron defined by trivial equality constraints, simple monotonicity inequalities and certain inequalities assigned to incomplete chordal graphs. The main result is that the list of (all) vertices of this bounded polyhedron gives rise to the list of (all) facet-defining inequalities of the chordal graph polytope. The original conjecture is then equivalent to a statement that all vertices of the dual polyhedron are zero-one vectors. This dual formulation of the conjecture offers a more intuitive view on the problem and allows us to disprove the conjecture.
action
ARLID cav_un_auth*0406024
name International Conference on Probabilistic Graphical Models 2021 /10./
dates 20200923
mrcbC20-s 20200925
place Skørping
country DK
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2022
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0320770
confidential S
arlyear 2021
mrcbU14 85114463462 SCOPUS
mrcbU24 PUBMED
mrcbU34 001231262100039 WOS
mrcbU63 cav_un_epca*0542414 Proceedings of Machine Learning Research, Volume 138: International Conference on Probabilistic Graphical Models, 23-25 September 2020, Hotel Comwell Rebild Bakker, Skørping, Denmark JMLR, Inc. and Microtome Publishing 2021 Brookline 449 460 2640-3498
mrcbU67 Nielsen T. D. 340
mrcbU67 Jaeger M. 340