bibtype J - Journal Article
ARLID 0541516
utime 20240103225650.2
mtime 20210405235959.9
SCOPUS 85088873552
WOS 000554432600001
DOI 10.1007/s00161-020-00904-1
title (primary) (eng) Magnetoelastic thin films at large strains
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0252589
ISSN 0935-1175
title Continuum Mechanics and Thermodynamics
volume_id 33
volume 1 (2021)
page_num 327-341
publisher
name Springer
keyword Magnetoelasticity
keyword Thin films
keyword Eulerian–Lagrangian
author (primary)
ARLID cav_un_auth*0386896
name1 Davoli
name2 E.
country AT
garant K
author
ARLID cav_un_auth*0101142
name1 Kružík
name2 Martin
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
share 25
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0407834
name1 Piovano
name2 P.
country AT
share 25
author
ARLID cav_un_auth*0316230
name1 Stefanelli
name2 U.
country AT
source
url http://library.utia.cas.cz/separaty/2021/MTR/kruzik-0541516.pdf
source
url https://link.springer.com/article/10.1007/s00161-020-00904-1
cas_special
project
project_id 8J19AT013
agency GA MŠk
country CZ
ARLID cav_un_auth*0385123
project
project_id GF19-29646L
agency GA ČR
country CZ
ARLID cav_un_auth*0385134
abstract (eng) Starting from the three-dimensional setting, we derive a limit model of a thin magnetoelastic film by means of Γ -convergence techniques. As magnetization vectors are defined on the elastically deformed configuration, our model features both Lagrangian and Eulerian terms. This calls for qualifying admissible three-dimensional deformations of planar domains in terms of injectivity. In addition, a careful treatment of the Maxwell system in the deformed film is required.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2022
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0319268
confidential S
mrcbC91 A
mrcbT16-e MECHANICS|THERMODYNAMICS
mrcbT16-j 0.591
mrcbT16-s 0.953
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2021
mrcbU14 85088873552 SCOPUS
mrcbU24 PUBMED
mrcbU34 000554432600001 WOS
mrcbU63 cav_un_epca*0252589 Continuum Mechanics and Thermodynamics 0935-1175 1432-0959 Roč. 33 č. 1 2021 327 341 Springer