bibtype C - Conference Paper (international conference)
ARLID 0542259
utime 20240103225755.7
mtime 20210511235959.9
DOI 10.1007/978-3-030-75549-2_16
title (primary) (eng) First-order geometric multilevel optimization for discrete tomography
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0542258
ISBN 978-3-030-75549-2
title Scale Space and Variational Methods in Computer Vision: 8th International Conference, SSVM 2021
page_num 191-203
publisher
place Cham
name Springer
year 2021
keyword discrete tomography
keyword multilevel optimization
keyword n-orthotope
author (primary)
ARLID cav_un_auth*0408933
name1 Plier
name2 J.
country DE
author
ARLID cav_un_auth*0408934
name1 Savarino
name2 F.
country DE
author
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0408935
name1 Petra
name2 S.
country DE
source
url http://library.utia.cas.cz/separaty/2021/MTR/kocvara-0542259.pdf
cas_special
abstract (eng) Discrete tomography (DT) naturally leads to a hierarchy of models of varying discretization levels. We employ multilevel optimization (MLO) to take advantage of this hierarchy: while working at the fine level we compute the search direction based on a coarse model. Importing concepts from information geometry to the n-orthotope, we propose a smoothing operator that only uses first-order information and incorporates constraints smoothly. We show that the proposed algorithm is well suited to the ill-posed reconstruction problem in DT, compare it to a recent MLO method that nonsmoothly incorporates box constraints and demonstrate its efficiency on several large-scale examples.
action
ARLID cav_un_auth*0410997
name International Conference on Scale Space and Variational Methods in Computer Vision : SSVM 2021 /8./
dates 20210516
mrcbC20-s 20210520
place Virtual Event
country CH
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2022
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0320772
confidential S
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0542258 Scale Space and Variational Methods in Computer Vision: 8th International Conference, SSVM 2021 978-3-030-75549-2 191 203 Cham Springer 2021 Lecture Notes in Computer Science 12679