bibtype J - Journal Article
ARLID 0542311
utime 20240103225759.7
mtime 20210513235959.9
WOS 000700408500012
SCOPUS 85103110429
DOI 10.1016/j.cnsns.2021.105805
title (primary) (eng) Nash Q-learning agents in Hotelling's model: Reestablishing equilibrium
specification
page_count 19 s.
media_type P
serial
ARLID cav_un_epca*0314933
ISSN 1007-5704
title Communications in Nonlinear Science and Numerical Simulation
volume_id 99
publisher
name Elsevier
keyword Hotelling’s location model
keyword Agent-based simulation
keyword Reinforcement learning
keyword Nash Q-learning
author (primary)
ARLID cav_un_auth*0409731
name1 Vainer
name2 J.
country CZ
author
ARLID cav_un_auth*0293468
name1 Kukačka
name2 Jiří
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
country CZ
share 50
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/E/kukacka-0542311.pdf
source
url https://www.sciencedirect.com/science/article/pii/S1007570421001167
cas_special
project
project_id PRIMUS/19/HUM/17
agency Univerzita Karlova
country CZ
ARLID cav_un_auth*0409019
project
project_id UNCE/HUM/035
agency Univerzita Karlova
country CZ
ARLID cav_un_auth*0409020
abstract (eng) This paper examines adaptive agents’ behavior in a stochastic dynamic version of the Hotelling’s location model. We conduct an agent-based numerical simulation under the Hotelling’s setting with two agents who use the Nash Q-learning mechanism for adaptation. This allows exploring what alternations this technique brings compared to the original analytic solution of the famous static game-theoretic model with strong assumptions imposed on players. We discover that under the Nash Q-learning and quadratic consumer cost function, agents with high enough valuation of future profits learn behavior similar to aggressive market strategy. Both agents make similar products and lead a price war to eliminate their opponent from the market. This behavior closely resembles the Principle of Minimum Differentiation from Hotelling’s original paper with linear consumer costs. However, the quadratic consumer cost function would otherwise result in the maximum differentiation of production in the original model. Thus, the Principle of Minimum Differentiation can be justified based on repeated interactions of the agents and long-run optimization.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2022
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0320103
mrcbC61 1
cooperation
ARLID cav_un_auth*0321375
name Univerzita Karlova
institution UK
country CZ
confidential S
article_num 105805
mrcbC86 3+4 Article Mathematics Applied|Mathematics Interdisciplinary Applications|Mechanics|Physics Fluids Plasmas|Physics Mathematical
mrcbC91 C
mrcbT16-e MATHEMATICSAPPLIED|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|MECHANICS|PHYSICSFLUIDSPLASMAS|PHYSICSMATHEMATICAL
mrcbT16-j 0.853
mrcbT16-s 1.146
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2021
mrcbU14 85103110429 SCOPUS
mrcbU24 PUBMED
mrcbU34 000700408500012 WOS
mrcbU63 cav_un_epca*0314933 Communications in Nonlinear Science and Numerical Simulation 1007-5704 1878-7274 Roč. 99 č. 1 2021 Elsevier