bibtype C - Conference Paper (international conference)
ARLID 0542514
utime 20240103225818.1
mtime 20210520235959.9
DOI 10.1109/ICASSP39728.2021.9414606
title (primary) (eng) Canonical polyadic tensor decomposition with low-rank factor matrices
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0542513
ISBN 978-1-7281-7605-5
title ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
page_num 4690-4694
publisher
place Piscataway
name IEEE
year 2021
keyword CANDECOMP
keyword PARAFAC
keyword rank minimization
author (primary)
ARLID cav_un_auth*0382249
name1 Phan
name2 A. H.
country RU
share 50
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
share 20
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0399439
name1 Sobolev
name2 K.
country RU
share 10
author
ARLID cav_un_auth*0399440
name1 Sozykin
name2 K.
country RU
share 10
author
ARLID cav_un_auth*0399441
name1 Ermilov
name2 D.
country RU
share 5
author
ARLID cav_un_auth*0382250
name1 Cichocki
name2 A.
country RU
share 5
source
url http://library.utia.cas.cz/separaty/2021/SI/tichavsky-0542514.pdf
cas_special
abstract (eng) This paper proposes a constrained canonical polyadic (CP) tensor decomposition method with low-rank factor matrices. In this way, we allow the CP decomposition with high rank while keeping the number of the model parameters small. First, we propose an algorithm to decompose the tensors into factor matrices of given ranks. Second, we propose an algorithm which can determine the ranks of the factor matrices automatically, such that the fitting error is bounded by a user- selected constant. The algorithms are verified on the decomposition of a tensor of the MNIST hand-written image dataset.
action
ARLID cav_un_auth*0409360
name IEEE International Conference on Acoustics, Speech, and Signal Processing 2021
dates 20210606
mrcbC20-s 20210611
place Toronto
country CA
RIV BB
FORD0 20000
FORD1 20200
FORD2 20201
reportyear 2022
num_of_auth 6
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0320289
confidential S
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0542513 ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 978-1-7281-7605-5 4690 4694 Piscataway IEEE 2021 ICASSP 2021