bibtype J - Journal Article
ARLID 0542523
utime 20240103225818.9
mtime 20210520235959.9
WOS 000632795500001
SCOPUS 85103167709
DOI 10.1080/03081079.2021.1895142
title (primary) (eng) Foundations of compositional models: inference
specification
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0256794
ISSN 0308-1079
title International Journal of General Systems
volume_id 50
volume 4 (2021)
page_num 409-433
publisher
name Taylor & Francis
keyword Probability distribution
keyword multidimensionality
keyword marginalization
keyword conditioning
keyword causality
keyword intervention
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0393863
name1 Bína
name2 Vladislav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/MTR/jirousek-0542523.pdf
source
url https://www.tandfonline.com/doi/full/10.1080/03081079.2021.1895142
cas_special
project
project_id GA19-06569S
agency GA ČR
country CZ
ARLID cav_un_auth*0380559
abstract (eng) Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus, the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible. The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus, the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2022
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0320293
confidential S
mrcbC86 3+4 Article Computer Science Theory Methods|Ergonomics
mrcbC91 C
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS
mrcbT16-j 0.417
mrcbT16-s 0.720
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2021
mrcbU14 85103167709 SCOPUS
mrcbU24 PUBMED
mrcbU34 000632795500001 WOS
mrcbU63 cav_un_epca*0256794 International Journal of General Systems 0308-1079 1563-5104 Roč. 50 č. 4 2021 409 433 Taylor & Francis