bibtype J - Journal Article
ARLID 0543464
utime 20240103225940.8
mtime 20210625235959.9
WOS 000665682400001
SCOPUS 85117794760
DOI 10.1007/s13042-021-01359-9
title (primary) (eng) Fusion of Probabilistic Unreliable Indirect Information into Estimation Serving to Decision Making
specification
page_count 19 s.
media_type P
serial
ARLID cav_un_epca*0461048
ISSN 1868-8071
title International Journal of Machine Learning and Cybernetics
volume_id 12
volume 12 (2021)
page_num 3367-3378
publisher
name Springer
keyword distributed data fusion
keyword information fusion
keyword Bayesian paradigm
keyword decision making
keyword parameter estimation
keyword multi-agent
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
share 50
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0333671
name1 Hůla
name2 František
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
country CZ
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/AS/karny-0543464.pdf
source
url https://link.springer.com/article/10.1007/s13042-021-01359-9
cas_special
project
project_id LTC18075
agency GA MŠk
country CZ
ARLID cav_un_auth*0372050
project
project_id CA16228
agency The European Cooperation in Science and Technology (COST)
country XE
ARLID cav_un_auth*0372051
abstract (eng) Bayesian decision making (DM) quantifies information by the probability density (pd) of treated variables. Gradual accumulation of information during acting increases the DM quality reachable by an agent exploiting it. The inspected accumulation way uses a parametric model forecasting observable DM outcomes and updates the posterior pd of its unknown parameter. In the thought multi-agent case, a neighbouring agent, moreover, provides a privately-designed pd forecasting the same observation. This pd may notably enrich the information of the focal agent. Bayes' rule is a unique deductive tool for a lossless compression of the information brought by the observations. It does not suit to processing of the forecasting pd. The paper extends solutions of this case. It: a) refines the Bayes'-rule-like use of the neighbour's forecasting pd. b) deductively complements former solutions so that the learnable neighbour's reliability can be taken into account. c) specialises the result to the exponential family, which shows the high potential of this information processing. d) cares about exploiting population statistics.
result_subspec WOS
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2022
num_of_auth 2
mrcbC52 4 A sml 4as 20231122145809.0
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0320767
confidential S
contract
name Licence to Publish
date 20210528
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.597
mrcbT16-s 1.003
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2021
mrcbTft \nSoubory v repozitáři: karny-0543464-PublicationAgreement.pdf
mrcbU14 85117794760 SCOPUS
mrcbU24 PUBMED
mrcbU34 000665682400001 WOS
mrcbU63 cav_un_epca*0461048 International Journal of Machine Learning and Cybernetics 1868-8071 1868-808X Roč. 12 č. 12 2021 3367 3378 Springer