bibtype J - Journal Article
ARLID 0544189
utime 20240103230042.0
mtime 20210801235959.9
WOS 000694711500021
SCOPUS 85111504429
DOI 10.1016/j.patrec.2021.07.011
title (primary) (eng) On Assigning Probabilities to New Hypotheses
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0257389
ISSN 0167-8655
title Pattern Recognition Letters
volume_id 150
volume 1 (2021)
page_num 170-175
publisher
name Elsevier
keyword minimum relative-entropy principle
keyword prior probability
keyword hypothesis
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
share 100
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/AS/karny-0544189.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0167865521002567
cas_special
project
project_id LTC18075
agency GA MŠk
country CZ
ARLID cav_un_auth*0372050
project
project_id CA16228
agency The European Cooperation in Science and Technology (COST)
country XE
ARLID cav_un_auth*0372051
abstract (eng) The paper proposes the way how to assign a proper prior probability to a new, generally compound, hypothesis. To this purpose, it uses the minimum relative-entropy principle\nand a forecaster-based knowledge transfer. Methodologically, it opens a way towards enriching the standard Bayesian framework by the possibility to extend the set of models during learning without the need to restart. The presented use scenarios concern: (a) creating new hypotheses, (b) learning problems with an insuffcient amount of data, and\n(c) sequential Monte Carlo estimation. They indicate a strong application potential of the proposed technique. Related interesting open research problems are listed.
result_subspec WOS
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2022
num_of_auth 1
mrcbC52 4 A sml 4as 20231122145841.9
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0321363
confidential S
contract
name ELSEVIER Publishing Agreement
date 20210726
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC91 C
mrcbT16-e COMPUTERSCIENCE.ARTIFICIALINTELLIGENCE
mrcbT16-f 4.253
mrcbT16-g 1.041
mrcbT16-h 8.4
mrcbT16-i 0.01281
mrcbT16-j 0.804
mrcbT16-k 18442
mrcbT16-q 188
mrcbT16-s 1.479
mrcbT16-y 33.16
mrcbT16-x 5.74
mrcbT16-3 6461
mrcbT16-4 Q1
mrcbT16-5 4.502
mrcbT16-6 364
mrcbT16-7 Q2
mrcbT16-C 63.8
mrcbT16-D Q3
mrcbT16-E Q2
mrcbT16-M 0.91
mrcbT16-N Q2
mrcbT16-P 63.793
arlyear 2021
mrcbTft \nSoubory v repozitáři: karny-0544189-PATREC8308.html
mrcbU14 85111504429 SCOPUS
mrcbU24 PUBMED
mrcbU34 000694711500021 WOS
mrcbU63 cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 150 č. 1 2021 170 175 Elsevier