| project |
| project_id |
LTC18075 |
| agency |
GA MŠk |
| country |
CZ |
| ARLID |
cav_un_auth*0372050 |
|
| project |
| project_id |
CA16228 |
| agency |
The European Cooperation in Science and Technology (COST) |
| country |
XE |
| ARLID |
cav_un_auth*0372051 |
|
| abstract
(eng) |
The paper proposes the way how to assign a proper prior probability to a new, generally compound, hypothesis. To this purpose, it uses the minimum relative-entropy principle\nand a forecaster-based knowledge transfer. Methodologically, it opens a way towards enriching the standard Bayesian framework by the possibility to extend the set of models during learning without the need to restart. The presented use scenarios concern: (a) creating new hypotheses, (b) learning problems with an insuffcient amount of data, and\n(c) sequential Monte Carlo estimation. They indicate a strong application potential of the proposed technique. Related interesting open research problems are listed. |
| result_subspec |
WOS |
| RIV |
IN |
| FORD0 |
10000 |
| FORD1 |
10200 |
| FORD2 |
10201 |
| reportyear |
2022 |
| num_of_auth |
1 |
| mrcbC52 |
4 A sml 4as 20231122145841.9 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0321363 |
| confidential |
S |
| contract |
| name |
ELSEVIER Publishing Agreement |
| date |
20210726 |
|
| mrcbC86 |
3+4 Article Computer Science Artificial Intelligence |
| mrcbC91 |
C |
| mrcbT16-e |
COMPUTERSCIENCE.ARTIFICIALINTELLIGENCE |
| mrcbT16-f |
4.253 |
| mrcbT16-g |
1.041 |
| mrcbT16-h |
8.4 |
| mrcbT16-i |
0.01281 |
| mrcbT16-j |
0.804 |
| mrcbT16-k |
18442 |
| mrcbT16-q |
188 |
| mrcbT16-s |
1.479 |
| mrcbT16-y |
33.16 |
| mrcbT16-x |
5.74 |
| mrcbT16-3 |
6461 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
4.502 |
| mrcbT16-6 |
364 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
63.8 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q2 |
| mrcbT16-M |
0.91 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
63.793 |
| arlyear |
2021 |
| mrcbTft |
\nSoubory v repozitáři: karny-0544189-PATREC8308.html |
| mrcbU14 |
85111504429 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000694711500021 WOS |
| mrcbU63 |
cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 150 č. 1 2021 170 175 Elsevier |