bibtype C - Conference Paper (international conference)
ARLID 0544577
utime 20240111141054.5
mtime 20210810235959.9
DOI 10.5220/0010508706410648
title (primary) (eng) Bayesian Mixture Estimation without Tears
specification
page_count 8 s.
media_type E
serial
ARLID cav_un_epca*0543770
ISBN 978-989-758-522-7
ISSN 2184-2809
title Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics
page_num 641-648
publisher
place Setúbal
name Scitepress
year 2021
editor
name1 Gusikhin
name2 O.
editor
name1 Nijmeijer
name2 H.
editor
name1 Madani
name2 K.
keyword Data Analysis
keyword Clustering
keyword Classification
keyword Mixture Model
keyword Estimation
keyword Prior Knowledge
author (primary)
ARLID cav_un_auth*0412278
name1 Jozová
name2 Šárka
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2021/ZS/uglickich-0544577.pdf
cas_special
project
project_id 8A19009
agency GA MŠk
country CZ
ARLID cav_un_auth*0385121
abstract (eng) This paper aims at presenting the on-line non-iterative form of Bayesian mixture estimation. The model used is composed of a set of sub-models (components) and an estimated pointer variable that currently indicates the active component. The estimation is built on an approximated Bayes rule using weighted measured data. The weights are derived from the so called proximity of measured data entries to individual components. The basis for the generation of the weights are integrated likelihood functions with the inserted point estimates of the component parameters. One of the main advantages of the presented data analysis method is a possibility of a simple incorporation of the available prior knowledge. Simple examples with a programming code as well as results of experiments with real data are demonstrated. The main goal of this paper is to provide clear description of the Bayesian estimation method based on the approximated likelihood functions, called proximities.
action
ARLID cav_un_auth*0411344
name International Conference on Informatics in Control, Automation and Robotics 2021 /18./
dates 20210706
mrcbC20-s 20210708
place Setúbal (online)
country PT
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2022
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0321817
confidential S
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0543770 Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics Scitepress 2021 Setúbal 641 648 978-989-758-522-7 2184-2809
mrcbU67 Gusikhin O. 340
mrcbU67 Nijmeijer H. 340
mrcbU67 Madani K. 340