bibtype J - Journal Article
ARLID 0545166
utime 20220328124748.2
mtime 20210903235959.9
WOS 000637966800004
SCOPUS 85089189678
DOI 10.1016/j.fss.2020.07.020
title (primary) (eng) Generalized convergence theorems for monotone measures
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 412
volume 1 (2021)
page_num 53-64
publisher
name Elsevier
keyword Absolute continuity
keyword Egoroff's theorem
keyword Lebesgue's theorem
keyword Non-additive measure
keyword Riesz's theorem
author (primary)
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
share 35
garant K
author
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
share 35
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 30
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/E/mesiar-0545166.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0165011415002894?via%3Dihub
cas_special
abstract (eng) In this paper, we propose three types of absolute continuity for monotone measures and present some of their basic properties. By means of these three types of absolute continuity, we establish generalized Egoroff's theorem, generalized Riesz's theorem and generalized Lebesgue's theorem in the framework involving the ordered pair of monotone measures. The Egoroff theorem, the Riesz theorem and the Lebesgue theorem in the traditional sense concerning a unique monotone measure are extended to the general case. These three generalized convergence theorems include as special cases several previous versions of Egoroff-like theorem, Riesz-like theorem and Lebesgue-like theorem for monotone measures.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2022
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0321916
confidential S
mrcbC86 2 Article Computer Science Theory Methods|Mathematics Applied|Statistics Probability
mrcbC91 C
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-j 0.7
mrcbT16-s 1.338
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2021
mrcbU14 85089189678 SCOPUS
mrcbU24 PUBMED
mrcbU34 000637966800004 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 412 č. 1 2021 53 64 Elsevier