bibtype J - Journal Article
ARLID 0545167
utime 20220328124520.0
mtime 20210903235959.9
WOS 000637680300011
SCOPUS 85102149142
DOI 10.1016/j.knosys.2021.106916
title (primary) (eng) Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0257173
ISSN 0950-7051
title Knowledge-Based System
volume_id 220
publisher
name Elsevier
keyword Aggregation functions
keyword Explainable AI
keyword Interactive ML
keyword Interpretable Machine Learning (ML)
keyword Ordinal sums
keyword Glass-box
keyword Transparency
author (primary)
ARLID cav_un_auth*0394828
name1 Hudec
name2 M.
country SK
share 20
author
ARLID cav_un_auth*0413274
name1 Mináriková
name2 E.
country SK
share 20
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 20
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0413275
name1 Saranti
name2 A.
country AT
share 20
author
ARLID cav_un_auth*0291975
name1 Holzinger
name2 A.
country AT
share 20
garant K
source
url http://library.utia.cas.cz/separaty/2021/E/mesiar-0545167.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0950705121001799
cas_special
abstract (eng) We propose a novel classification according to aggregation functions of mixed behaviour by variability in ordinal sums of conjunctive and disjunctive functions. Consequently, domain experts are empowered to assign only the most important observations regarding the considered attributes. This has the advantage that the variability of the functions provides opportunities for machine learning to learn the best possible option from the data. Moreover, such a solution is comprehensible, reproducible and explainable-per-design to domain experts. In this paper, we discuss the proposed approach with examples and outline the research steps in interactive machine learning with a human-in-the-loop over aggregation functions. Although human experts are not always able to explain anything either, they are sometimes able to bring in experience, contextual understanding and implicit knowledge, which is desirable in certain machine learning tasks and can contribute to the robustness of algorithms. The obtained theoretical results in ordinal sums are discussed and illustrated on examples.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2022
num_of_auth 5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0321917
mrcbC61 1
confidential S
article_num 106916
mrcbC86 1 Article Computer Science Artificial Intelligence
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 1.351
mrcbT16-s 2.192
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2021
mrcbU14 85102149142 SCOPUS
mrcbU24 PUBMED
mrcbU34 000637680300011 WOS
mrcbU63 cav_un_epca*0257173 Knowledge-Based System 0950-7051 1872-7409 Roč. 220 č. 1 2021 Elsevier